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PREFACE

This report describes the work performed under Task 2 of the DOT/FAA
High Velocity Jet Noise Source Location and Reduction Program (Contract
DOT-0S-30034). The objectives of the contract were:

] Investigation of the aerodynamic and acoustic mechanisms of
various jet noise suppressors, including scaling effects.

° Analytical and experimental studies of the acoustic source distri-
bution in such suppressors, including identification of source
location, nature and strength, and noise reduction potential.

' Investigation of in-flight effects on the aerodynamic and acoustic
performance of these suppressors.

The results of these investigations have led to the preparation of a
design guide report for predicting the overall characteristics of suppressor
concepts from models to full-scale static, to in-flight conditions, as well
as a quantitative and qualitative prediction of the phenomena involved.

The work effort in this program was organized under the following
major tasks, each of which is reported in a separate Final Report:

Task 1 -- Activation of Facilities and Validation of Source
Location Techniques

Task 2 -- Theoretical Developments and Basic Experiments
Task 3 -- Experimental Investigation of Suppression Principles

Task 4 -- Development and Evaluation of Techniques for "In-flight"
Investigation

Task 5 -- Investigation of "In-flight" Aerocacoustic Effects on
Suppressed Exhausts

Task 6 -- Preparation of Noise Abatement Nozzle Design Guide Report

Task 1 was an investigative and survey effort designed to identify
acoustic facilities and test methods best suited to jet noise studies.
Task 2 was a theoretical effort complemented by theory verification experi-
ments which extended across the entire contract period of performance.
Task 3 represented a substantial contract effort to gather various test
data on a wide range of High Velocity Jet Nozzle suppressors. These data,
intended to help identify several "optimum" nozzles for "in-flight" testing
under Task 5, provide an extensive high quality data bank useful to prepara-
tion of the Task 6 design guide, as well as to future studies.
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Task 2, the subject of the present report, was formulated as a funda-
mental theoretical and experimental study aimed at understanding of the 1
noise generation and suppression mechanisms of high velocity jets. A gross
overview of the most important results achieved in this study along with an
indication of the relevant report sections is given in the following figure,
The reader interested in the aero-acoustic theory which was used in the
ultimate prediction procedure recommended herein need study only Sections
4,3 to 4.7, The reader interested in the experimental data acquired in the
course of performing this task need study only Sections 5, 6, 7, and
8.1 and 803.

Turbulent
Mixing
4.5

Acoustics
of Jet Noise
4.3, 4.4

Aeroacoustic
Theory: Com-

pavisons with
Data

4.7

Lip Noise
8.1

Mixing,
Interference
Experimental Mechanisms
Studics 5

Physical
Shielding
Experiments
1

Acoustic

Shielding
Mechanism
6

Overview of sections containing the most important results of this report.
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1.0 SUMMARY

The DOT High Velocity Jet Noise Source Location and Reduction Program,
Contract DOT-0S-30034, was conceived to bring analytical and experimental
tools to bear on understanding the fundamentals of jet noise for simple and
complex suppressor nozzles.

Task 2 in particular is the most basic of this six-task program and was
formulated as a fundamental theoretical and experimental study aimed at an
understanding of the noise generating and suppression mechanisms of high
velocity jets.

The physical view of jet noise adopted in this study is fairly con-~
ventional. The inherent instability of jet flows leads to jet turbulence
with the energy of the turbulent eddies being extracted from the mean flow,
this energv of the eddies being ultimately dissipated by viscosity. Jet
noise is ..cribed to this continuous process of the birth and decay of the
eddies with the eddies being convected at velocities of the order of the jet
velocity during their lifetime. When the nozzle operates supercritically
and is not contoured to permit proper supersonic expansion, the flow aft of
the nozzle exit plane is embedded with shocks and the passage of the turbulent
eddies through the shocks generates '"shock' noise. From a source point of
view, only turbulent mixing and shock noise sources are consiuered in the
ultimate prediction scheme developed in this report.

In the modeling of the sources of jet noise, this report leans heavily
on the works of Lighthill, Ribner, and Ffowcs-Williams for turbulent mixing
noise and on the work of Harper-Bourne/Fisher for shock noise. The first
step in the analytic modeling is the prediction of the properties of the
mean jet plume. A simplified eddy viscosity type approach based on
Reichardt's inductive theory of turbulence is employed to achieve this. An
independent check on the correctness of the plume mapping is obtained by
extensive measurements with Laser Velocimeters (LV) of the velocity field in
jet plumes. Similarity arguments and data from the rather sparse set of
available time-dependent turbulence measurements carried out in jet flows
are next used to establish a general procedure of deducing the turbulent
source properties relevant to jet noise from the prediction of the mean
plume properties. A feature of the present study is that the link to the
far-field SPL (sound pressure level) spectra from the turbulent sources is
carried out by fully accounting for acoustic/mean-flow interactions, via the
so-called Lilley equation which may alternatively be also described as an
inhomogeneous Orr-Sommerfield equation. The above steps have been integrated
together to produce a unified aerocacoustic model which can, in principle,
predict far-field SPL spectra given only the nozzle exit geometry, upstream
stagnation pressures, and temperature. Multiple flow systems such as dual-
flow exhaust systems can be readily accommodated in this prediction scheme.
The prediction scheme includes a semiempirical method of prediction of shock
noise adopted from the work of Harper-Bourne and Fisher. This unified
prediction scheme is extensively applied to a great variety of jet noise
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data from round nozzles, conventional bypass systems, inverted flow systems,
and multielement nozzle exhaust systems over a wide range of velocities and
temperatures of interest in jet noise. Generally, very satisfactory agree-
ment is obtained in all these theory - data comparisons, including the
trends of parametric variations. The procedure is general enough to handle
both flight and static cases. While the bulk of theory -~ data comparisons
were carried out for the static case, some comparisons with fair success
have also been carried out for flight cases. The development of this unified
universal aeroacoustic prediction based largely on first principles (empiri-
cism is chiefly introduced in the eddy viscosity method used in the plume
prediction and also in the similarity arguments used to infer time-dependent
turbulence quantities needed to predict jet noise) is believed to be the
most significant technical achievement of this task. Hence, full details of
the pertinent equations, computer program, etc., needed to implement this
method are described 1in a supplement to this report, FAA-RD~76-79, Ila.

Physical shielding offers a possibility of reducing the jet noise
reaching the observer on the ground. Pertinent solutions relevant to shield-
ing by plane barriers and by pipe~like enclosures are given. Comparisons
with an experiment on physical shielding were conducted and reveal fair
agreement, except that at shallow angles to the jet axis, the measured
4 attenuation at high frequencies exceeds the predicted attenuation. The pipe
enclosure study shows that low frequency jet noise may be actually enhanced
by use of ejectors, and, in general, physical shielding benefits are confined
to the inlet arc. Thus, beneficial effects for ejectors can accrue only
from aerodynamic considerations rather than physical shielding considera-
tions, unless treated ejectors are employed.

Several single-element and multielement experiments with round and
rectangular tubes were carried out with mapping of the far-field sound over
an entire hemisphere to assess acoustic shielding effects. Very pronounced
shielding of jet noise by jet flows is demonstrated at suitable high velocity
and temperature conditions. LV measurements carried out in several of these
configurations revealed that jet turbulence structure is not significantly
. altered by jet temperature or jet Mach number.

. A series of basic experiments to verify fluid shieiding and the impor-

k tance of acoustic/mean-flow interactions was also carried out, and results

; obtained for the dependence of the shielding on jet velocity, jet temperature,
shield thickness, source frequency, and angle of observation are in accord

' to a high degree with the corresponding theoretical analysis.

Lip noise was investigated experimentally, both with and without external
velocity, by cross-correlation techniques, and it appears that lip noise is
not a significant noise source for practical jet velocities and with
reasonably contoured nozzles upstream of the nozzle exit plane. A litera-
ture survey was carried out of the possibilities of jet noise suppression by
| the use of particle/fluid additives, and it appears unlikely that any signifi-
. cant benefit can be derived by any of these schemes, especially for heated
jet flows.

The role of large-scale structures in jet noise was explored in a sub-
\ contract effort by the University of Southern California and was not con-
g clusive in establishing their direct relevance to jet noise. Nor was it
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possible to derive any new insight into any novel concept of jet noise
suppression associated with large-scale structures. It was also not clear
what amendment, if any, was needed to the unified aeroacoustic model
described earlier to reflect the role of large~scale structures.

In conclusion, it appears that for practical purposes jet noise phe-
nomena at high velocities and temperatures can be largely explained as a
combination of mixing noise and shock noise, It was necessary in this study
to evolve a comprehensive aeroacoustic model devoted equally to all aspects
of jet noise known to be important, such as turbulent mixing, convective
amplification, acoustic/mean-flow interaction, and shock noise. But once
such a unified scheme was evolved, the success of the present task suggests
that rational preliminary design decisions can be arrived at with high
confidence before committing to a test program, with the aid of the pre-
diction tools developed herein. It is reiterated that these prediction
tools have been embodied in a computer program available in a supplement to
this report, FAA-RD-76-79, Ila.
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2.0 INTRODUCTION

Jet noise has been studied extensively over the past 25 years dating
back to the early 1950's when the first papers of Lighthill laid a basis for
theoretical analysis of jet noise. Lighthill's theory provided some powerful
scaling laws on the basis of which the variation of jet noise with jet
velocity, jet temperature, and angle of observation could be correlated for
a given nozzle exhaust geometry. The quality of experimental jet noise data
acquired in the late 1960's and early 1970's improved markedly over that used
earlier to test Lighthill's predictions. The improvements included careful
suppression of upstream noise sources, extensive use of spectral analysis,
and the acquisition of data over very wide parametric ranges of velocity and
temperature.

The more recent experiments have revealed systematic discrepancies
between the data and the predictions of Lighthill's theory. Moreover, from a
practical point of view, the single-flow, round convergent nozzle is itself
too noisy in terms of its jet noise output so that a more comprehensive
aeroacoustic jet noise prediction scheme encompassing complex exhaust nozzle
configurations was clearly called for. 1In the early 1970's, a major improve-
ment over Lighthill's theory occurred with the acceptance of the fact that
the influence of the mean jet flow environment on the elementary turbulent
noise sources (the so-called "eddies') was not accounted for in Lighthill's
theory, and that accounting for this "acoustic/mean-flow interaction" does
help to resolve almost all the theory - data discrepancies observed with
Lighthill's theory for single-flow, round nozzle noise.

Many of these improvements for single-flow, round nozzle noise were
achieved in the course of a fundamental study sponsored by the USAF-DOT
(Contract F33615-73-C-2031). It seemed logical, therefore, to pursue the
structure developed in that study and inquire whether the same methodology
could be extended to predict the noise from complex suppressor nozzles. A
main objective of the present study (Section 4) was to demonstrate that such
an exercise is feasible.

Based on the desirability of separating various mechanisms of jet noise
suppression, such as alteration of turbulence levels, acoustic/mean-flow
interaction, physical shielding, etc., Sections 5, 6, and 7 describe a wide
variety of experiments carried out during the program designed to elucidate
the relative importance of the various mechanisms. In Sections 6 and 7,
relevant theoretical results from Section 4 are used to analyze the experi-
mental results.

Section 8 is devoted to several toplcs such as lip noise, the role of
large-scale structures in jet noise, etc., that have often been mentioned in
recent years as influencing suppression phenomena but whose precise importance
has not been clarified.

The remaining sections summarize the conclusions and recommendations for
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further work.




3.0 FACILITIES DESCRIPTION

This section summarizes the salient features of the facilities and
associated diagnostic instrumentation utilized in the experimental portions
of this program. Since the General Electric Corporate Research and Develop-
ment (CRD) outdoor jet noise facility was the primary site for Task 2 jet
noise experiments, a summary description of its capabilities is given in
Section 3.1. Further details of its capabilities and validation checkout
tests can be found in the Task 1 final report of this program.

Other facilities were briefly utilized for specialized investigations,
but descriptions of these facilities are included in the sections where these
investigations are reported. These include (1) the University of British
Columbia Anechoic Jet Noise facility, used for lip noise experimental inves-—
tigations (see Section 8.1); (2) the General Electric Evendale Outdoor Jet Noise
facility (JENOTS), used for lip noise relative velocity experiments (see
again Section 8.1); and (3) the University of Southern California Anechoic
Jet Noise facility, utilized for experimental studies of orderly structure
and its relevance to jet noise (see Section 8.3). All of these facilities
are also described in detail in the Task 1 final report.

Summary descriptions of the "hole-in-the-wall" technique for source
location diagnosis (Section 3.2) and the Laser Velocimeter for jet plume flow
measurements (Section 3.3) are included herein, since these were the primary
"unconventional" experimental measurement tools utilized in Task 2. Again,
further details of these devices may be found in the Task 1 final report.

3.1 GENERAL ELECTRIC CORPORATE RESEARCH AND DEVELOPMENT (CRD)
OUTDOOR FACILITY

The experimental noise investigations of Task 2 required the construction
of a new facility at the General Electric Corporate Research and Development
(CRD) Center. An outdoor facility was constructed which offers a unique com-
bination of capabilities, including hemispherical microphone coverage, per-
manently installed microphones, acoustically treated ground plane, and real-
time data processing. This facility is intended primarily for high-tempera-
ture jet noise research and, as such, has a silenced burner capable of oper-
ation to 2000° R.

3.1.1 Acoustic Arena

Acoustic suppression between combinations of elemental jet flows can be
quite small on a total power basis and requires detailed azimuthal far-field
measurements to allow the investigator to determine the relative importance
between different proposed suppression mechanisms. A hemispherically swept
array of microphones is provided in the CRD facility to survey the far-field
directivity patterns of nonaxisymmetric nozzles or suppressor configurations
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as shown in Figure 3-1. Twelve 1/2-inch B&K model 4133 microphones are
attached to a traversing boom that pivots about the jet axis. These micro-
phones are positioned every 10°, starting at 8 = 20° to the jet axis and
ending at 6 = 130°. To avoid an obstruction in the jet plume, a large hoop
is used to provide a centerless pivot on the downstream end of the microphone
boom. The boom can be moved to any azimuthal angle by the two overhead
cables. Since the paths traversed by the microphones are circular arcs
centered on the jet axis, any deviation of the radiation patterns from axi-
symmetry can be detected easily. A microphone arc of nine feet is used

with the distance in terms of nozzle diameters ranging from 72 to 123,

Outdoor acoustic facilities are extremely dependent on weather condi-
tions, and in areas where the weather is very changeable, as in the North-
eastern United States, the ability to respond quickly to favorable weather
conditions is crucial to the utilization rate of the facility. To avoid long
startup and shutdown times, a hermetically sealed microphone holder was
designed to allow permanent installation. An additional benefit of this
approach is that the electronic noise floor is measured easily when the
microphones are covered, An acoustically treated surface resulted in free
field data above 500Hz. By using large sheets of acoustical foam, a
reasonable reduction of the ground reflection problem can be obtained with
minimal time required to lay down and take up the coverings. To allow test-
ing during the winter months, the 30 x 28 foot concrete pad is heated electri-
cally to remove ice and snow,

3.1.2 Jet Facility

To provide the heated air for the high temperature tests, two heaters
are used. A large natural-gas-fired heat exchanger pre-heats the air to
about 400° F, and this warm air is fed into the burner end of the combustor
muffler through a 4-inch pipe, as can be seen on Figure 3-1. Two small JP4
combustors are used to provide the remainder of the heat addition. To pre-
vent combustion noise from contaminating the jet noise downstream of the
burners, the wall of the plenum is lined with 2 inches of Kaowool and faced
with a 1/8-inch-thick perforated sheet (457 porosity) of Hastelloy X. No
significant burner or other upstream noise contamination was noted in any
of the data presented in this report.

3.1.3 Data Acquisition and Reduction System

Data acquisition is controlled by an HP 2100 series mini-computer that
obtains the acoustic signals from a GR 1921 real-~time one-third-octave band
analyzer and samples the temperatures and pressure signals. By the use of a
scanning multichannel amplifier, GR 1566, each microphone signal is analyzed
sequentially, and the signal level of each one-third-octave band (100 Hz to
80 KHz) is stored on magnetic tape. The effective frequency range depends on
the microphones used. For operational monitoring, a three~dimensional plot
of the one-third-octave band analysis of the sound pressure level, SPL, of
each microphone is displayed on an oscilloscope as the microphone array is
sampled. A typical oscilloscope display is shown in Figure 3-2. For backup
and when longer averaging times are necessary, the acoustic signals can be
recorded simultaneously on a Sangamo Sabre IV tape recorder. After all of
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N the signals have been accumulated, the computer corrects the data for non-
uniform response of the microphones and can correct for anv known non-free-
field effects of the arena. Using these corrected values of the sound pres-
sure level, the computer then calculates the overall average sound pressure
levels for each microphone, the one-third-octave band acoustic power levels,
and the overall acoustic power level. The raw and calculated data are then
stored on magnetic tape.

While the computer is processing the acoustic data, simultaneous mea-
surement and calculation of all pertinent parameters for determination of the
nozzle exit conditions and ambient conditions also are carried out and re-
corded on magnetic tape. Since all the pertinent data exists on one magnetic
tape, the acoustic information is normalized by the computer immmediately
following the test.

3.2 HOLE-IN-THE-WALL SOURCE LOCATION MEASUREMENTS

The "hole~in-the-wall" experiment is a means of determining the axial
distribution of noise sources in a jet plume. There are several versions of
this method, but their common feature is that the jet is caused to flow

} through an aperture that is made as small as possible without affecting the
jet or producing additional noise through buffeting or toroidal edge - tones.
The idea is to separate the jet noise into two parts: upstream of the
aperture and downstream of the aperture.

Of course, the aperture cannot completely separate the noise, as there
is noise leakage through the aperature in both directions, with preference
for contributions from upstream sources to appear downstream of the hole in
the wall. Potter and Jones , in the original version of this method, used
a reverberant chamber and a movable jet nozzle. They claim to be able to
establish closure on the noise distribution by first determining the dis-
tribution by upstream measurements and then by reversing the experiment and

! determining the distribution by downstream measurements. This contention

] must be examined in more detail. A schematic representation of a hole-in-

. the-wall experiment is shown in Figure 3-3, using two back-to-back rever-
berant or anechoic chambers (A and B) with an aperture between them. In this
experiment, the acoustic power in both A and B will be simultaneously mea-
sured. The sum of the acoustic power must be a constant, Py, if there is no
interaction noise. Suppose that the aperture could completely separate the

el

|

?f noise, then as the jet was withdrawn into Chamber A, the power measured in

.7 Chamber B, Pg, would decrease. Due to leakage, however, the measured value
of Pg will be larger than the true value. The acoustic power measured in A

? will likewise be decreased by an identical amount so that '"reversing" the

experiment (as done by Potter and Jones) does not establish closure as it
reproduces the same cumulative power distribution in both cases.

: In a more recent study, McGregor and Simcox(z) have used a movable jet

{ and a fixed absorbent chamber to absorb the upstream noise, and measured the

! downstream noise with an outdoor microphone array. This method is more

' attractive in that it does not require that the reverberant characteristics

of the chamber be calibrated, and the jet itself is not as subject to possible

*
Superscript numbers in parentneses refer to the references contained in the
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excitation due to high acoustic level inside the chamber. In this method, it
is necessary, however, to calibrate the aperture diameter versus axial
distance to maintain closure on the total jet power.

A third, slightly different, version of the "hole-in-the-wall" is used
in this study, with a translating absorbent chamber and a fixed jet nozzle
and microphone array. Figure 3~4 shows the absorbent chamber mounted on a
cart that can traverse axially on a set of rails. The chamber is constructed
of 1/2-inch transite and lined with 2 inches of high temperature Kaowool
acoustic material. Two industrial mufflers are used to silence the entrain-
ment air inlets. A series of orifice plates are used to provide the apera-
ture.

3.3 LASER VELOCIMETER AT CRD

The LV system developed at GE CRD consists of (1) laser, (2) optics, (3)
processor, and (4) data acquisition and analysis system. The laser used
during this experiment was an argon ion laser with maximum power of 4 watts
at 5145 R wavelength. The optics consisted of a single-color, dual-scatter
off-axis back scattering arrangement. The transmitting optics had a focal
length of 563 mm. The receiving optics assembly, located at 6° relative to
laser beam axis, contained an f/5 receiving lens., A photomultiplier was used
as the photodetector. The laser interference fringes at the scattering
volume were oriented for the axial velocity and its turbulence measurement.
The entire laser and LV optics were mounted rigidly on an X-Z table for
obtaining transverse velocity distributions, where the Y axis is along the jet
centerline. The X-Z table was driven by two independent stepping motors
along X and Z directions, respectively, to an accuracy of 0.02 mm per move.
The motion of the table was controlled remotely by a numerical indexer via a
teletypewriter. The X-Z table was mounted on two tracks on the ground,
parallel to the jet centerline (Y axis), in order to obtain various jet
downstream station measurements (Figure 3-5).

The electrical signal from the photomultiplier was amplified via a wide-
band preamplifier mounted on the X-Z table, and transmitted to the LV pro-
cessor located inside a data control trailer 15 m away from the jet facility.
The LV principle and the digital-counter-type LV processor are described in
detail by Asher(3). A schematic of the LV signal processing technique is
shown in Figure 3-6. A 500 MHz digital clock was used in the processor for
particle transit time measurement.

The LV data acquisition system block diagram is shown in Figure 3-7.
The analog LV signal, proportional to the flow velocity, was input to the
Northern Scientific pulse height analyzer. A velocity histogram (probability
density function) was constructed after a large amount of LV data were
collected in the pulse height analyzer. The histogram was then recorded on
a digital cassette recorder. The recorded LV histogram data were transmitted
to a computer at 1200 baud at the end of each test for off-line analysis.
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The seeding material used for the light scattering particles was 1 um
diameter alumina powder. The alumina powder was fluidized in a fluidized bed
before it was fed into the plenum chamber of the jet flow. Special care had
to be taken in positioning the seeding probe inside the plenum chamber to
obtain the best seeding distribution for each jet configuration.
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4.0 THEORETICAL DEVELOPMENTS

4.1 BACKGROUND AND OVERVIEW

The problem of jet noise in gas turbine exhaust systems arises from
mixing of the jet exhaust stream with the ambient atmosphere. The mixing
process is extremely unsteady at high Reynolds numbers characteristic of gas
turbine engines, so that one is inevitably dealing with a noisy flow. From
a fundamental point of view, one may say that noise is a consequence of a
flow being both unsteady and compressible. Jet flows are unsteady because
the mixing of two streams at different velocities is inherently unstable* and
hence a continuous source of turbulence.

The basis for the understanding of jet noise was laid in the early
1950's in two papers of Lighthill{(4»3), Lighthill introduced his theory of
jet noise as follows. The exact equations of continuity and motion can be
written as:

e} 9 - ‘

YRR (ovj) 0 (1)
h|

2 (DV)*‘L (pv,v, + p,.) =0 (2)

3t i axj i3 ij

Py = péij T Ty (3)

In equations (1), (2), and (3), p denotes density, vi denotes the ith com-
ponent of velocity (Cartesian components), xi the corresponding space coordi-
nate, pjj the compressive stress tensor consisting of a pressure term pGij
(Gij is the Kronecker delta function), and T3 the viscous stress tensor. It
is characteristic of Lighthill's development of the jet noise problem that he
used the momentum equation in Reynolds form and that he made no use of the
energy equation (which for an inviscid, nonheat-conducting gas of specific
heat ratio y would be

bp . Y De
Dt p Dt

with D/Dt denoting a differentiation following the fluid). It should be noted
that equations (1) and (2) assume the absence of any explicit mass or force
sources in the fluid, and are thus tailored to reveal noise sources in the
absence of any obvious sources such as unsteady combustion, struts (which may
induce fluctuating forces), etc. This development is certainly pertinent to

* The word "unstable'" is only intended to convey that it is the instability
of a jet exhaust flow that causes the generation of the intensely turbulent
free shear layers., It is not intended to imply the presence of resonant

or ordered structure phenomena.,
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jet noise since it is hoped that the burning, etc., is complete by the time
the flow leaves the nozzle, and struts, etc., are usually absent in the ex-
haust plume.

By taking »/0t of equation (1) and 3/3x; of equation (2) and sub-
tracting the latter from the former, one arrives at the Lighthill equation
(which is an exact equation), namely

2 2
3 p 2 2 3
—5 -a. . Vp= — (T..) (4)
at2 0 Bxiaxj ij
where T1 = pvyvy + (p - aozp)éij - Tyse The term agp is (so far) any con-
stant ve10c1ty, gut for low Mach numbeY, unheated flows at least, it will be

convenient to take agp as the undlsturbed speed of sound, thus eliminating
(approximately) the term (p - ag 0)61J in Tijj. In equation (4), the usual
convention that repeated indices imply summation over the repeated index from
1 to 3 is followed.

The ingenuity of Lighthill's manipulating equations (1) and (2) to lead
to (4) notwithstanding, it is important to note that a somewhat deeper idea
than mere manipulation is involved in the development of equation (4).

Source-free linear acoustics of a uniform, homogeneous medium is governed by
the equation

2
3
Lo =20 _ %% -9 (5)
0 ) 0

On the other hand, if sources, say s(x, t), are present, equation (5) would
be modified to

Lo = s(x, t) (6)

Based on equations (5) and (6), one may say that, in attempting to cast the
jet noise problem in the framework of classical, linear acoustics of a
stationary, uniform, homogeneous medium, Lighthill saw that noise sources
arise in this 3nalogy to the extent that in a fluid flow 3 p/Bt is not
balanced by a 72 p. In other words, if one wishes to draw an analogy to the
linear acoustics of a stationary, uniform, homogeneous medium, the sources
are precisely the extent to which the pertinent wave equation for such a flow
(Lgp = 0) is not satisfied. The ingenuity of Lighthill's formulation is, of
course, in show1ng that this residual or imbalance was exactly 32/8xiaxj
(Tij).

Retarded time solutions to equation (4) can be written down formally,
but they show immediately that no further progress can be made unless intui-
tive assessments are made of the "source' term Tjj. Lighthill argued that
with ap taken as the speed of sound in the undisturbed medium and neglecting
viscous stresses the dominant part of Tjj would be pvivy. To make further
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progress, he assumed that (pvivj) could be approximated by ,viivis, Where pj
is the mean jet density and v ; the nonacoustic portion of tﬂe fluid veloc-
ities. 1If these arguments are accepted, the source terms can then be esti-
mated, at least on a similarity basis.

The second key idea that Lighthill advanced relates to the consequences
of the source term appearing in equation (4) as a double divergence. The
physical result that he deduced was that jet noise was due to a large number
of small, statistically independent volumes (called eddies) with each of
these eddies contributing noise of a quadrupole character. To understand
this, one must first note that if the spatial extent over which the pvjvj
term of Tjj is correlated as small compared to the wavelength of the emitted
sound, the source region is what is termed "compact" in acoustic terminology,
and can be treated essentially as a point source®, Mathematically, at a given
frequency, one would approximate PiVEivVe; by a three-dimensional delta func-~
tion representation as ijé(i) exp (jwt). To decide when the source regions
are indeed compact, a dimensional argument must be resorted to, as fol-
lows.

If 2 denotes a length scale of the eddies and u the value of the veloc-
ity, Lighthill points out that the associated frequency will be proportional
to (u/%), so that the ratio (2/2) (X being the wavelength of the emitted
sound) will be proportional to (u/ao). Based on this, one may say that, if
the flow Mach numbers are small, the eddies are likely to be compact. The
condition of low Mach number flows by itself is too restrictive and not very
interesting because jet flows are not noisy at low Mach numbers.

To cope with the high Mach number jet noise problem, Lighthill points
out that the eddies that create jet noise are convected with the flow, and in
their own frame of reference are actually decaying rather slowly (hot film
measurements of jet flows with two spatially separated probes confirm this).
The reader is referred to Lighthill's papers(4’5) for a fuller exposition of
these ideas. The end result is that when eddy convection is accounted for,
the resulting source compactness condition is that the turbulent (fluctuating
velocity) Mach number (My) must be small. The reasons for this modified
condition are that a frozen, subsonically convecting pattern generates no
sound and hence only the time variations (frequencies) in the eddy's own
(convected) frame of reference create sound. These frequencies (in the
eddy's own frame of reference) are proportional to (u'/%) where u' is the
fluctuating velocity., The condition that My be small is likely to be met even
for high speed jets, since turbulence levels (referenced to the jet exit velocity)
rarely exceed 157 or so. Thus, even for a Mach 2.0 jet, M, will not exceed
0.3.

There is a small price to be paid for this ability to cope with high jet
Mach numbers; the linear acoustic theory has to be developed to handle the
problem of radiation from convected quadrupoles, and the usual Doppler
effects on frequency, pressure amplitudes, directivity, etec., have to be
considered. The development of the consequences of convection of the quad-
rupoles was a major contribution of Lighthill's analysis.

* As will be pointed out shortly, it is neither phyvsically desirable
(especially in dealing with high jet velocities) nor mathematically
necessary to assume source compactness in jet noise theorv., Source non-
compactness effects were first treated by Ffowes-Williams(6) and Rihner(7)
and are fully accounted for in this report though the Lighthill notion of
ascribing jet noise to a large number of statisticallv independent volumes
is retained while accounting for source noncompactness effects within these
vo lumes.,
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Analtyical details of how to solve the problem of radiation from con-
vected quadrupoles (within the framework of classical, linear acoustics of a
uniform, stationary, homogeneous medium) are given in Lighthill's papers, and
the details of the procedure are not repeated herein. The purpose here is to
summarize broadly the predicted results.

The results can be classified into: (1) those associated with noncon~
vective aspects, and (2) those associated with the convection of the eddies.
The principal type (1) result is that the acoustic power radiated by a point
quadrupole of strength Q and frequency o is proportional to w4Q2. Since the
frequency itself scales as (u/f%) and since, for a given nozzle geometry, % is
expected to be insensitive to jet velocity and jet temperature (at least as a
first approximation), Lighthill's formulation predicts that jet noise power
at low jet Mach numbers (apd the mean square pressure at any given far-field
angle) would scale as 0:20° when jet velocity U and jet density are varied
(note that the quadrupoie strength Q itself would vary as piUz). It is worth
repeating that the eighth power velocity law is crucially related to the point
quadrupole nature of the jet noise radiation. The point quadrupole nature of the
sources in turn exist not only because equations (1) and (2) can be manip-
ulated to yield equation (4), but also because the most important part of Tij
is estimated to be PViVj and because it is further assumed (confirmed by
experimental observations) that the Reynolds stresses (ViVj) are correlated
over lengths small compared to the acoustic wavelength corresponding to the
frequency at which the eddies radiate.

The convective aspects of Lighthill's results will now be stated. The
result for the acoustic pressure of a convected point quadrupole is that its
pressure is modified from that of a stationary point quadrupole as

P
= S 3 )
1 - Mccoso)

Py

where py is the pressure of the moving quadrupole, M, is its convection Mach
number (referenced to the speed of sound of the uniform, homogeneous, sta-
tionary medium through which it moves). The angle 6 is the angle made be-
tween the source-observer direction and the line of source motion, with the
source position taken at the instant where the source was when it emitted the
radiation reaching the observer at current time. The pressure Pg is that
which a stationary source (located at the retarded position) would produce at
the same far-field location. Equation (7) has the restriction that it is
valid only for point quadrupoles convecting at a uniform velocity.

In applying equation (7) to the jet noise problem, Lighthill suggested
that the mean square pressure would vary as

2

y2 p'
<" . - : (8)

(1 - Mccose)6
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Ffowcs-Williams(6) and Ribner(7) showed, however, that two changes need to be
made to equation (8) before it can be applied to the jet noise problem.

First they showed that when the integration over a finite jet volume of a
large number of statistically independent eddies is carried out, the proper
factor in the denominator of equation (8) ought to be (1 - M. cose)5 rather
than (1 - M. cos6)6, The eddy convection velocity by measurement for round
nozzle flows is found to be roughly 657% of the ideal jet exit velocity.

The second modification introduced by Ffowcs-Williams and Ribner is of
considerable importance. Note first, that if the frequency of the eddy in
its own frame of reference is wp, the frequency of the emitted sound in the
far field is given by the Doppler shift formula wgy/(1l - M. cos6). This means
that however small wg might be, for supersonic eddy convection (M. > 1), the
observed frequency along the direction 6. = cos_l(l/MC) is infinite and the
associated wavelength is zero. This means that however small the correlated
source region, it cannot be regarded as compact along the direction 6.

This difficulty with the original Lighthill result (a foretaste of which is
that equation (8) "blows up" or is singular at M. cos = 1) led Ffowcs-Williams
and Ribner to independently develop a more generally valid result,

2.8

<p2> . o (9)
[(1 - M_ cos®)? + a? MCZ]S/Z

where a2 is a semiempirical constant (noncompactness parameter) allowing for
finite eddy correlation volumes.

Essentially, the picture of jet noise prediction that emerged in the
early 1960's or so was as follows. The total acoustic power was predicted
and measured to vary as U® at low jet velocities transitioning, to a U3 - law
at high jet velocities. T?e directionality was predicted to be basically as
[(1 - M, cos®)2 + a2Mc2]73/2 yith Ribner's(7) development predicting an addi-
tional cos28 type dependence at low frequencies. The spectral distribution
for geometrically similar nozzles was predicted to scale such that fQ/Vj was
constant. This last result was not so much an insight from the Lighthill
equation as simply based on dimensional reasoning. When jet temperature was
changed (keeping jet velocity constant), by virtue of the fact that jets are
essentially constant-pressure flows, jet density will also be changed and the
theory suggests that noise power and mean squared pressure would vary as P3c.
In subsequent work, Lighthill suggests that because jet noise arises from the
mixing of the jet with the ambient, the strength of the quadrupoles ought to
be taken as proportional to (pj + pg)/2 where py is the density of the am-
bient fluid rather than just to pje Hence, he suggested that the variation
with jet density might be expressible as a power law pjw, where w lies be-
tween 1 and 2.

Apart from the source aspects (such as low frequency shear noise), the
predictions of the Lighthill theory, whether for the U%-law, the ps; to the
power 1 to 2 dependence, or the [(1 - M; cos0) + a2M.21-5/2 directivity, are
not noticeably frequency dependent.
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The Lighthill theory led to at least two notable ideas for jet noise
suppression. Since the thrust of a jet varies as AjVjZ (where Aj is the jet
exhaust area) and its acoustic power as A-ng, it is easily demonstrable that
jet noise could be reduced at constant thrust by raising exhaust area and
lowering jet velocity. The high bypass ratio fan engine is an embodiment of
this concept, and indeed by and large, the noise of these engines (especially
the ones that power the wide bodied transports averaging bypass ratios of
5:1) is not dominated by jet mixing nolse at all. For straight turbojet
cycles, ideas due to Greatrex(8) and others led to the notions of "mixer"
nozzles such as the daisy nozzles. The exact basis by which such nozzles
serve to reduce noise was not completely understood, but it seemed clear that
at least one ingredient in the reduction was the tendency for these nozzles
to produce enhanced jet mixing by allowing for greater entrainment (as com-
pared to a circular nozzle), and thus reducing the integrated value of the
Lighthill stress tensor (pvjvj).

The experimental data in the early 1960's tended to confirm several of
the Lighthill predictions in the gross aggregate. Peak overall sound pressure
levels, overall power levels (abbreviated as OAPWL), etc., showed the U8 - v
J ; behavior. The directivity of the overall sound pressure levels tended to
‘ follow roughly a (1 - M. cos#)~> type variation with M, taken as 0.65 My. The
predicted density dependence was, however, never checked out carefully. When
nozzle size was varied (other things being kept equal), frequencies do scale
inversely as the length ratio but when jet velocity is varied (other things
being held fixed), the measured far-field frequencies do not appear to scale
linearly with velocity as would be expected from the notion that (f2/V) stays
constant.

One of the first measured discrepancies from the Lighthill theory was T
the fact that the directivity of the high frequency noise in jets with sub-
sonic eddy convection velocities often did not follow the predicted (1 -

Mc cose)"5 directivity, but exhibited a heart-shaped dip near the jet axis.
, Another significant discrepancy was what has been picturesquely termed by
Ribner as the "reverse' Doppler shift. If one measured jet noise from ¢ = 0

to 6 = 90° (again for convenience restricting oneself to jets with subsonic
eddy convection velocities), one would expect from the Lighthill theory that

" the sound field at shallow angles would be dominated by higher frequencies

1 while that at the movre broadside angles would be dominated by lower fre-

) quencies. This is because, by the Doppler shift formula, the emitted fre-
quency is related to the source frequency wy by the expression wn/(1 -

\ M. cosf). Actual measurements exhibit the reverse tendency, with the sound

C
pressure level at 90° to the jet axis often being peaked at a frequency three

!

1

| times higher than that at 6 = 30°. Ribner(9) has explained this "reverse"

4 Doppler shift as due to two features. First, Ribner's self noise - shear
noise decomposition itself shows that the low-frequency noise will be biased
towards the jet axis, whereas the high-frequency noise is omnidirectional.

L Second, Ribner points out that the mean-flow velocity and temperature pro-

b files would refract away the high-frequency sound from the jet axis. Indeed,

Ribner and his students performed several experiments in the mid-1960's with

artificial sound sources (discrete frequency point sources) in jet flows

) which exhibit heart-shaped dips close to the jet axis in the far field quite

! similar to jet noise data itself.
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A series of experiments conducted by Lush(lo) were notable for the fact
that for subsonic unheated jets, over a range of velocities [91.4-304.8 m/sec
(300-1000 ft/sec)], an attempt was made to make a fairly detailed theory -
data comparison with the Lighthill theory.

Lush begins (in terms of theory - data comparison) by noting that, from
the Lighthill theory, one would expect the far-field acoustic pressure on a
given arc (for a given nozzle exhausting into a given ambient) to vary as

2,8 |

v V. F (0, w) Glw,) I

<p2> 6, w - -4 2 4 (10) !
(1 - MC cosf)?

where w = wg/(1 - M, cosé),

In equation (10), Fy; (0, w,) would be the intrinsic directionality of the
sound at a source frequency wy and G(wg) the intrinsic source spectrum [not
predicted at all by the Lighthill theory but determined in principle by
knowledge of the turbulent dynamics of the eddy in its own frame of ref-
erence]. Lush assumes that F1 (8, w3) is essentially unity (i.e., he takes
the intrinsic directionality to be omnidirectional) and also neglects the
(aZMCZ) type correction in the denominator ot equation (10). His experiments,

being with subsonic jets, involved M. _< 0.65, so tlat the (aZMc ) term was %
always small compared to (1 -~ M cost)“. To avoid the need to know G(uwg),

Lush examined the variation of <p“ (0, w) with fixed wp and varying 6.
Finally, in seeking to collapse data from different nozzle sizes, and at
different velocities from a given nozzle size, Lush examined the directivity
at fixed values of [wod/ZWU], where U is the jet velocity. This procedure
involves determining the directivity at fixed-source Strouhal numbers and
entails examining the far-field acoustic pressures at a frequency dependent

on the angle, i.e., at [wg/(1 -~ Mccost)]. Also, a suitable value of M. must
be assumed, and Lush chose the traditional estimate of Mo = 0.65 Mj. Since
Lush was working with room temperature air jets operated at subcritical
pressure ratios, the variation of p in his experiments was quite small and
therefore negligible. Consistent with his assumption of an omnidirectiona

F1 (8, w ), Lush expected (from Lighthill's theory) that the variation of p2>
(9, w) at fixed (mo, U) would vary with 6 as (1 - Mccose)‘ . At fixed (6, w)
the variation with U would be as UB/(1 - M cos8)5. Data for w(l - Mccos8)d/27U
from 0.03 to 1.00 (which brackets the range of frequencies occurring in jet
noise quite well) was examined by Lush. With regard to the directivity at
fixed-source Strouhal numbers, he found that an expression of type (1 -

M. cosf)~> overestimates the variation with angle of the measured data at

high source Strouhal numbers, and conversely, at low Strouhal numbers the
variation is underestimated. Similarly, at shallow angles to the jet axis

and at high frequencies, U®/(1 - M. cose) overestimates the measured varia-
tion with U, and conversely, at shallow angles and low frequencies the mea-
sured variation with U is underestimated by this expression. At large angles
to the jet axis, Lighthill's theory and ideas work fairly well. For example,
at 6 = 90°, the pressures scale very well as U8 and the peak frequency scales
extremely well at U/d. Correspondingly at shallow angles, e.g., at 6 = 30°,
the peak frequency appears almost insensitive to jet velocity.
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It is appropriate to note the rather significant discrepancies from the
l.ighthill theory found bv Hoch, et al (11 in the area of heated jet noise.
As mentioned earlier, the Lighthill theory leads one to expect that the mean
square pressures (as well as the acoustic power) will vary as p:® where w
lies between 1 and 2 when jet density alone is varied. Measurements by Hoch
and his colleagues of this '"jet density exponent” u showed it to be a strong
function of logjg (Vj/Co) where V3 is the jet velocity and C, the ambient
speed of sound. Often, « is negative for V. - C, being as small as -0.5, while
w approaches 2 for Vj/(,‘O approaching and exéceding 1.6. Heating the jet flow
(at constant Vj) also tends to bias the relative power spectrum towards lower
and lower frequencies.

The estimation by Lighthill that (pvivj) is the most important part of
T;;, and his subsequent approximation of it by (p'vtivt.), has proved most
vaiuable in providing key insights into the jet noise problem as evidenced
by the previous discussion. It is also true, however, that this approxima-
tion essentially suppresses all effects associated with the influence of the
mean~flow velocity and temperature environment of the jet, i.e., convection,
refraction, and shielding of the radiation from the moving eddies.

This neglect of mean-tflow effects in the Lighthill development was
pointed out by several writers in the 1960's, notably Ribner(7), Powel1(12),
Phillips(13), and Csanady(lh). “he retgagcion effect alluded to earlier is,
of course, one example of this. Powell 12) pointed this out by stressing that
convection of the elementary quadrupole generators leads to a difficulty with the
theory. Since the mean square pressure of a conglomerate of moving quadrupoles is
different from that of a stationary one by the factor (1 - Mccose)"s, by integrat-
ing this factor weighted by sin v (to account for the solid angle) from 6 = 0° to
6 = n, one can show that the acoustic power of the moving quadrupole ou§h5 to
be greater than that for a stationary one by a factor (1 + M.2)/(1 - M.%)*%.
This means that from the Lighthill theory, one would expect the overall power
level to vary as 8 (1 + M) /(1 - MCZ)Z_ As Powell points out, based on this,
one can expect not just an eighth power law but a power law with a velocity
exponent ranging from 9 to 16. Experiments, of course, show a faithful adher-
ence to an eighth power law., Lighthill himself was aware of this difficulty,
but felt that the turbulence intensity of jet flows (as a fraction of the jet
velocity) diminished with increasing jet Mach number in a manner sufficient
to restore the eighth power law. The faithful adherence to an eighth power
law of the overall sound pressure level (OASPL) at 90° to the jet axis, how-
ever, fails to support this contention. Ribner, Powell, and Csanady have
suggested a much more reasonable resolution. Consider an eddy moving in a
jet flow. The reason that the eddy moves is, of course, that the jet fluid
moves. Relative to its immediate environment, the eddy is actually not moving
at all. At high frequencies in particular, one would expect the power radia-
tion of the eddy to be governed by its immediate environment, and since the
eddy has no velocity relative to this cavironment, one would not expect 'con-
vective amplification" at high frequenﬁies. (Ths enhancement of power in the
Lighthill theory by the factor (1 + M, Y/ - M, )2 is often referred to as
"convective amplification.')




The idea of systematically accounting for the effect of the jet flow
on the radiation by the quadrupoles was pursued intensively first b
Phillips(l3) and subsequently somewhat more completely by Lille)(IS . To
explain this idea, Lighthill's notion that jet noise sources arise to the

extent to which some "standard" source-free wave equation is not satisfied

is employed. In Lilley's development, the standard equation chosen is

not the equation governing wave propagation in a stationary, uniform, homo-
geneous medium. Lilley notes that to a rough, first approximation, the jet
flow may be treated as a constant pressure, parallel sheared flow. The equa-
tion governing wave propagation in this type of flow is the Orr-Sommerfield
equation often used to study the stability of such flows. Symbolically
denoting this by Lpg(p') = 0, Lilley attempts to determine by using the full
equations of motion the extent to which Log(p') # 0. This exercise may be
symbolically summarized by saying that

Log(p') = SLilley(x, t) (11)

The problem with equation (11), however, is that it is not so easy to esti-
mate Sy jjjey from the full equations of motion. Lilley assumes the follow-
ing: (1) the mean-flow is at constant static pressure, (2) the gas is in-
viscid, nonheat conducting, and of constant specific heat ratio y without
any externally imposed heat, mass, or momentum sources, (3) all field vari-
ables decompose into a steady and fluctuating part, e.g., uj = uy + u'y,
where an overbar denotes a time average or steady part (also let r denote
log (p/pg) where pg is a reference pressure and c the local speed of sound) ,
(4) the mean-flow is unidirectional and depends only on one transverse coor-
dinate xp, i.e., G =V (x2)611’ (5) whenever second order products of fluc~
tuating quantities such as r'u'y, r'?2, (c2)'u'i, (c¢2)'tr' appear, they are
neglected (however, second order velocity products such as u'ju'; are re-
tained), (6) c2 is only a function of xy. By subtracting the time averaged
portions of the equations of motion from the full equations of motion (using
the six assumptions previously listed), and defining D/Dt as

) d
= 3¢t V(xy) ——I ’

SIIUI

Lilley shows that one can develop an equation of type (11) as follows:
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From this point on, Lilley's equation (12) is followed through in terms of
application to jet noise in a manner similar to Lighthill's equation. The
quantity r' for small values of p' relative to py may be shown to be equal
to (p'/pg). Taking u'y on the righthand side of equation (12) to be the
known, solenoidal, turbulent velocity fluctuations, (12) provides an inhomo-
geneous Orr-Sommerfield equation for (p' /p ) much as Lighthill's theory pro-
vides an inhomogeneous uniform, homogeneous, stationary medium wave equation.

Several assumtpions have to be made in arriving at equation (12), but
granting the validity of these assumptions, a source term is obtained in
equation (12) which is purely quadratic in the fluctuating velocities, unlike
Lighthill's equation (or Phillip's(13) equation which was a predecessor to
Lilley's equation). While there is no doubt that Lighthill's equation is
exact and thus contains, in principle, all the physics of jet noise (but then
so do the full equations of motion), it also seems that precisely because in-
tuitive estimates of source terms are ultimately involved, Lilley's develop-
ment is better tailored to the high speed, high temperature jet noise problem.
It is, however, only proper to note the limitations of Lilley's equation. It
neglects jet spread by assuming a parallel, sheared flow. It assumes the jet
flow to be at constant static pressure. With multielement suppressors under
static conditions, significant variations of "base" pressure occur, thus,
making the constant static pressure assumption questionable. Despite the fact
that the neglect of terms is carried out systematically [assumption (5)], it is
true that Lilley's development assumes fundamentally that jet mixing and jet
noise is a process that can be regarded as a small perturbation about a
parallel, sheared flow. Since fluctuating velocities as high as 40% of the
local mean velocity are common, and even local flow r -rersals can occur in
jet flows, a 'small perturbation" assumption can cle. .y be questioned. It
is not as easy to solve Lilley's equation as it is to solve Lighthill's equa-
tion. In particular it is noted that it is almost impossible to solve
Lilley's equation when the jet cross section is not axially symmetric (e.g.,
for a rectangular jet or a daisy nozzle, etc.).

A final objection to Lilley's equation arises from the fact that it is
an inhomogeneous Orr-Sommerfield equation. Since there are unstable solutions
to the homogeneous Orr-Sommerfield equation, it is clear that even without
any ''sources" equation (11) can yield solutions that yield acoustic radiation
in the far field. The only solution to the homogeneous form of Lighthill's
equation azplatz - a,’v%p = 0 satisfying the outgoing wave radiation condi-
tion in the far fielg is the trivial solution p = o.

While this difficulty with Lilley's equation is still a matter of con-
troversy, it is felt that since Lilley's approach could be regarded as a
passive analogy approach similar to Lighthill's, there is no need to avoid
using it on the basis of the possibility of unstable solutions to the homo-
geneous Orr-Sommerfield equation. The motivation to use an equation of the
Lilley type is that practically all the previously cited discrepancies be-
tween the Lighthill theory and experimental data can be resolved if we
systematically account for acoustic/mean-flow interactions on the basis of
an equation of Lilley's type. Acoustic mean flow interactions affect jet
noise radiation in several ways. First, the mean temperature and velocity
fields of the jet flow cause the radiated sound to be refracted generally
leading to a dimunition of sound pressure levels close to the jet exhaust
axis, expecially at high frequencies. Second, as recently recognized, the
mean flow structure around the radiating eddies provides an acoustic impedance
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environment that fundamentally alters the radiation efficiencv with which the
eddies radiate from what it would be if the eddies radiated into a stationary,
homogeneous medium (as assumed by Lighthill). The latter aspect is a feature
that has long been recognized in the nonaeronautical acoustic disciplines,

e.g., in archltectural acoustics, where it 1s well known that the radiation
efficiency of a source is a function of the impedance environment that it is
exposed to. The acoustic-mean flow interaction is strongly frequency dependent.

It should be reiterated that the developments to follow in this report
have in fact retained several key ideas of the Lighthill theory. The two
most important of these ideas are (1) the idea of identifying the '"residual"
from a standard wave equation as the source term for jet noise, and (2) the
recognition of the convected, compact, quadrupole nature of the eddies. A
mixing analysis is used to derive the evolution of the mean velocity and
temperature of the jet plume downstream of the nozzle exit plane. The
analysis is based on Reichardt's inductive theory of free turbulence,
Reichardt's theory is undoubtedly considered simplistic by many workers in
the turbulence modeling area, but because the governing equations in
Reichardt's theory are linear (for the axial momentum and enthalpy fluxes),
it is the only technique that allows construction of auite complex fet flow
fields with relatively simple mathematics. This capability is rather impor-
tant since it is necessary to have a capability to handle flow fields from
complex nozzle shapes such as dual-flow systems, lobed nozzles, etc.

Having mapped the jet plume in terms of the mean velocity and mean tem-
perature, the jet is broken up into a large number of elemental volumes.
Similarity arguments essentially derived by Davies et al( are next used
to associate a quadrupole strength, quadrupole convection velocity, quadru-
pole self-oscillation frequency wgp, and a source spectrum (peaked at wo)
with each volume. As an example, Davies, et al show by measurement that
wg is proportional to dV/dr for round jets (where r is a radial coordinate).
The local mean velocity and mean temperature profile at the axial station
where the elemental volume is located are used in the acoustic thecry [based
on Lilley's equation (12)] to obtain the far-field SPL spectrum generated
by each elemental volume. Summing up all the elemental volume contributions
in a mean square sense (i.e., treating the jet, as suggested by Lighthill, as
a large assemblage of uncorrelated elemental generators), the total far~field
SPL spectrum is obtained. Note that the method considers analytically all
aspects of the jet noise problem known to be important, namely evolution of
the mean properties of the plume, relevant quadrupole parameters such as
convection velocities, source frequencles, etc., and the influence of the jet
flow and temperature profiles on the radiation by the eddies. Some empirical
constants are involved, especially in the mixing analysis and relation of
quadrupole parameters to the mean flow properties, but the end result is a
prediction of absolute sound pressure levels in various one-third-octave
bands at any angle and radius in the far field, given the nozzle exhaust
geometry and distribution of temperature and velocity at the nozzle exit
plane.

Shock-associated noise arises with supercritical operation and associated
underexpansion of the flow (unless carefully contoured nozzles are used to
avoid underexpansion) leading to shock waves in the flow field aft of the
nozzle plane. Shock screech involves a feedback mechanism and can result in
pure tones of very high inensity, but, fortunately, a very high degree of
nozzle symmetry and upstream smoothness seems necessary to produce screech.
Practical jet configurations, especially heated engine flows, seem to be free
from any significant screech phenomena.
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The mechanism by which shocks ¢in produce broadband noise has been known
tor several vears. In g uniforrly flowing, homogencous medium, three linear-
ized unsteady modes of motion can be identificd, namelv, sound waves, shear
wiaves, and entropy waves. To first order of smallness, such modes propagate
independently of each other but if the flow has very steep gradients in local-
ized areas, even to first order, mode scattering or mode conversion can occur
whereby, for example, a shear wave produces sound and entropy waves, etc.
Shocks in the flow obviously create such localized steep gradients in the
tlow, and since turbulence in a flow can be thought of as a superposition of
shear waves, it is easy to see that there is a situation of shear wave -
shock interaction leading to sound production.

i A semiempirical model for shock-associated broadband noise based on shock=-
turbulence interaction has been developed by Harper-Bourne and Fisher for
round convergent nozzles and has been found to be extremely useful in pre-
dicting this component of jet noise. The physical picture employed by
Harper-Bourne and Fisher is that as the turbulent eddies convect through the
shocks, they generate broad band noise at each encounter. In addition,
however, to the extent that the eddy is coherent between two encounters, an
"interference'" spectrum also will be produced. The adaptation of the Harper-

' Bourne and Fisher method used herein considers both these sources.

The prediction procedure outlined previously can then be modified to :
add on (in a mean square sense) a shock-noise component (as discussed above) !
to the previously discussed "turbulent mixing' noise. Extensive theory and :
data comparisons for conical nozzles, dual flow systems of both the conven-
tional type and the inverted flow type, and multielement nozzles (and for
certain cases with flight) are presented.

Several additional analytical items not directly relevant to the unified
aeroacoustic method were also developed during this program. While the final
method used treats the jet flow as a parallel, axisymmetric sheared flow,
several approximations of the jet flow as a plug flow were also developed dur-

‘ ing the first phase of the study. One of these is tailored to reveal acoustic
' shielding phenomena in a noncircular jet. The motivation here is that such

) noncircular jets are known to display the phenomena of "quiet" and "noisy"
planes. Expressions for the power and directivity of convecting sources
shielded by an annular plug flow jet were also developed to provide a basis
for examining the test results of Section 6.2. A plug flow model relevant to

; the prediction of conventional bypass coaxial jet noise was also developed.
In both Sections 4.2.1 and 4.2.3, theory - data comparisons are presented.
' In Section 4.8, physical shielding theory relevant to shielding by wing-like
! surfaces and by semi-infinite pipe like enclosures (relevant to possible
f; physical shielding benefits of ejectors) is developed.
.
4 The above overview has attempted to give a perspective of how the basic

ideas of jet noise have evolved since Lighthill's work and how the proposed
aeroacoustic prediction method is founded on the latest advances in jet noise
theory.
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4,2 PLUG FLOW MODELS

4.2.1 Low Frequency Model for Noncircular Jets

A low frequency asymptotic theory for the shielding of noise by jets of
arbitrary cross section is discussed in this section. The results of the
theory provide an explanation for the appearance of the quiet and noisy
planes of a slot jet. The arguments in favor of this explanation are derived
from a model problem in which a pulsating mass source is convecting along the
axis of an infinitely long column of fluid of arbitrary cross section. The
method of matched asymptotic expansions is applied to derive expressions for
the radiative power and the acoustic pressure of the source.

The solution for the elliptic jet indicates that the radiative power in
the horizontal plane (containing the major axis) is less than that for the
vertical plane (containing the minor axis). This difference in power varies
with source Strouhal and jet Mach numbers. The effects of jet temperature
are also included in the analysis. The theoretical results for the sound
pressure level are in reasonable agreement with experimental findings for
slot nozzles. The theory indicates that acoustic shielding offered by jets
is most important at high frequencies and at high Mach numbers.

4.2.1.1 The Radiated Power

4.2.,1.1.1 Introduction

The work of Mani(l7) concentrates on shielding offered by circular jets.
It is natural to extend his results to jets of arbitrary cross section. The
purpose of this section is to show how such extension can be carried out at
low frequencies and to assess the effect of noncircularity on acoustic
shielding. It should be borne in mind, however, that shielding is most
effective at high frequencies so that a low frequency theory can, at most,
indicate trends as the frequency is increased. (By comparing the present
approximate results to Mani's exact results for a circular jet, an upper
limit for the validity of this low frequency theory can be established. This
upper limit is reasonably high so that a low frequency theory can provide
useful information even for moderately high frequencies.)

Considerable experimental evidence (Olsen(ls) indicates that the noise
characteristics of noncircular jets at high frequency are a strong function
of the specific plane of measurement. Not only are the spatial distributions
of the pressure level different, but alsc the power radiated per unit polar
angle varies with the angle itself (Figure 4-1).
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In this section, it is shown that a plausible explanation for the
appearance of the quiet and noisy planes is acoustic shielding. The argu-
ments in favor of this explanation are drawn from the results of a model
problem,

The formulation of the problem parallels that of Mani(17) quite closely.
It is assumed that the jet velocity profile can be sufficiently repre-
sented by a constant velocity profile (i.e., by a plug flow jet). Cer-
tainly, at low frequencies, the precise form of the radial gradients could be
handled by an extension of this asymptotic theory. The basic idea is to
divide the flow regime, in the sense of matched asymptotic expansions, into
two regions, one in the vicinity, the other distant from the jet. In the
inner region the axial gradients can be neglected since the appropriate
length scale is the diameter of the jet. On the other hand, the pressure in
the outer region obeys the classical wave equation 30 that the velocity (or
its gradient) does not enter in the outer solution. The basic approach used
in this section is also applicable to slow axial variations in the mean flow.

4.2.1.1.2 Formulation of the Model Problem

It is assumed that the acoustic field obeys a linear wave equation of
the form

3 S 3 2 T2 2 =D
(g—t— + U T)-X_) 0 C (DXX c a9 1 13)

where ¢ is the velocity potential, D is the disturbance that generates the
acoustic field, t is time, x is an axial coordinate along which the fluid
velocity is (U + ¢yx) where U = const*. The undisturbed speed of sound is
represented by the constant ¢ and A = v2 is the Laplacian in the transverse
coordinates. Physically, equation (13) represents the propagation of an
acoustic disturbance, whose fluid velocity is (¢4, V ¢) in a uniform stream
of speed U.

As with all partial differential equations, equation (13) is solved in
a specific space domain. This domain is illustrated in Figure 4-1 together
with the appropriate values of U, ¢, and the undisturbed densiiv p. Thus,

for r < Ti, U=1U, c =cp, § =p2; for r > ry, U=0,c=cy, b = p1, where

r=r].(6) 0 < 6 < 2m (14)

is the equation of a doubly infinite cylinder.

* ..
Note that U, ¢, ..., etc., are assumed to be sectionally constant.

31




Guided by the desire to maintain simplicity, to model the source term
D, it is assumed that

D=e‘iwt . 2 . *
0" 8(x - Ut)f(r, €)/a i= /-1 (15)

where w, is a given constant and f(r, 8) is a given function such that f = 0
for r > r;. Physically, the source term represented by equation (15) is a
harmonicaily oscillating disturbance of frequency w., concentrated at a point
on the centerline given by x = Ut. 1In other words ghe source is convecting
at speed U in the positive x direction. The assumption that the source
convection speed is the same as the jet speed is made for simplicity and will
be relaxed in the next section.

Across the jet-quiescent region interface, the continuity of the pertur-
bation pressure, p, and the particle displacement are required. The assump-
tion of particle displacement continuity implies negligible mixing between
the jet and the surrounding medium. The expression for the perturbation
pressure is most easily derivable from the linearized x-momentum equation,
and is given by

p=-p(o, +US) (16a)

where p is the undisturbed density in the appropriate region. The particle
displacement, n, obeys

3¢

R ¢t Ung (16b)

where 3%/9n is the velocity normal to the mean location of the jet-quiescent
region interface.

The undisturbed static pressure is also continuous across the jet bound-
ary. This implies that for a given ambient condition, the jet density or
speed of sound (i.e., temperature) determines uniquely the undisturbed ther-
modynamic state of the jet.

The governing equation is hyperbolic, and it requires initial conditions
for uniqueness. These can easily be provided (for example, ¢ = 3¢/3t = 0 at
t = 0). In the present context, however, the interest is in the long time
solution and the initial conditions have negligible effect on this.

With the above preliminary remarks in mind, the time and x dependence
in equation (13) are extracted through Fourier transforms. Define

* "a'" {5 a linear dimension characteristic of the nozzle size
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- (17a)
[+ ]
) =1 - Je’“‘“t o* dw
o (17b)
and*
_i(w - w )x/U
o*x = @* e 0) / (17C)
After these transforms, the resultant equaiion for o* is given in the
i still-air region by
Yy 2 + 2 > =
AD* + ko(Kl) o* = 0 (18a)
and in the jet region by
. 1 (18b)
&3F + k2(K,)? X = - f(r, 9)/a?
(2n)* c5 U
or
AT* - kZ(KD)2 9% = ———;1—— f(r, 8)/a?
0 2 2 )2 2 U
(2m)* <5 (18¢)
; where ko = wy/cy.
+ o+ -
\ The propagation constants Kl, K2 and K2 are given by
!
. + (19a)
‘s (Kl)z = KZ - (K‘ - l)Z/MZ
L
+ *
. After performing the Fourier transform in time, it is clear that the x depen-
dence of the solution must be of the form given by equation (17c). Note that
N a Fourier transform in x also leads to (17c¢) after inversion.
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(K;)? = T iy 0pp - (6 = 1)2/M2 (19b)

(K;)?

(k - 1)2/M -T._p
12 721 (19¢)

where g = w/wo, M= U/c1 <1, oy = pz/pl, and 1"12 = I‘1/I‘2 where

r=(1-R/c.)?
( /cp) (194

The gas constant is denoted by R, and cp is the constant pressure specific
heat. An additional assumption in deriving equations (19b and c¢) is that
the gas is thermally perfect (but not calorically perfect).

The case (K'{)2 > 0 is relevant here (otherwise the far-field solution
dies off exponentiallg in the transverse variable), that is, 1/(01 + M) <« <
1/(1 - M). When (K¥)4 > 0, that is 1/(1 + M) < k < 1 + M VT7p2] equation
(18b) holds; otherwise (18¢) holds.

The behavior of K1, KT is shown in Figures 4-2 and 4-3 for parametric
values of M. In these figures, it is assumed that Tj9p,; = 1.

To complete the present framework for the formulation of the problem,
the t and x dependence of the matching conditions for the interface are
extracted. In the still-air region, one finds that the transforms of equa-~
tions (16a and b) are

pr =1 py w ¥ (20a)
— . 1 3¢%
=W on (20b)

and in the jet region

- 4 Y2
Pr =1 oy, @ (20¢)

.
Z}'Q%T (20d)
0
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Thus the canonical problem to be solved is

2 g2 = ) 2
with boundary conditions across the jet interface

K 0= Py (21b)

on r = rj

fa¢ = ?—

STV TR (21¢)
where K2 stands for (KI)Z, (K;)2 or (KE)Z. Note that ¢ = - (2n)1/2c2 Uo*
and ¢, denotes the solution in the jet with ¢1 in the ambient medium,

It can be shown that, after taking the convective derivative, (3/3t + U
3/9x), of equations (13) and (15), the following equations result:

3 ) -ju_ t
(3¢ *+ U %)2 p - cé Pyx = €5 0P = i P, w, € 0 s(x - Ut)f(r, 8)/a? (22a)

and j

Pt - Ci Pxx ~ ci 4p =0 (22b)

in the jet and quiescent regions respectively. Therefore, the convective
N derivative of the solution to equation (2la) provides the solution of equa-
tion (22). The left side of equation (22) is essentially that of Lilley's
) equation with U and ¢ sectionally constant. Also note that differentiating
‘ the solution of equation (22) with respect to x once (twice) yields the solu-
. tion for a generalized axial pressure dipole (quadrupole). Furthermore, by
specializing f(r, 6) to suitable singular distributions, the solution to any
| point dipole or quadrupole field can be readily obtained. As an example, let
\l f(r, 6) = 8(r -~ 15)8(8 - 6,)/r where r, and 6, are parameters. Differentiating
4 this solution of equation (22) with respect to ro and 6, yields the solution
‘ for an (r - 8) quadrupole.

V. The above remarks imply that if the source solution (i.e., the Green's
. function) to equation (2la) is known, the solution for an arbitrary forcing
function f(r, 6) can be written down by superposition. Since the jet has a
completely arbitrary cross section, the origin of the coordinate system can
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be placed at the source location. Thus the canonical problem can be replaced
by

Ad ¢ lbz K2 ¢ = 8(r)/r (23)

without any loss of generality. Boundary conditions [(21b) and (21c¢)] are,
of course retained.

4.2,1.1.3 Expansion of the Inner and OQuter Solutions

It is convenient to introduce an inner variable r = r/a and rewrite
equation (23) as

3?2 13 1 3% % _ &(F)
AR AR AR R S (24)

where a denotes the characteristic size of the jet and ¢ = kja. It is de-
sired to find an asymptotic solution of (24) as ¢ - 0. For the time being,
it is assumed that K2 is about unity, and it is later shown how to improve
the asymptotic solution where K2 is considerably larger.

The asymptotic limit € - O clearly corresponds to a low frequency solu-
tion of equation (22).
. . . (1)
Consider inner gauge functions §,,

(e) = (£/2)2Y logH(e/2) and expand
the inner solution, outside the jet, ¢%i) as

(i) (i), _y, ()
ot T = ) 8, (ede v 8: %’ C e (25)

Vs, H v
The form of the inner gage functions is suggested by the results of classical
slender body theory (Germain{20)). The supersonic flow over a slender body
is formally equivalent to the low frequency theory of a pulsating body,
[Miles(ZI), Landau and Lifshitz<22)]. Thus, it is not surprising that the
same gage functions arise in the present problem that did in classical slen-
der body theory. After substituting equation (25) into (24) and collecting
like gage functions of ¢, there results

[}
o

1: Z¢(()6) ("lowest" order solution) (26a)

n
o

log %: Z¢é}) (26b)
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£y2 2 (Ey. 3. (1) _ 2
(2) log (2). A¢i2 = 0 (26c)
€y2 €y. . 03) (i)
(2) log (2)‘ Aoy, + 4K? 697 = O (26d)
€y2, 3 (1) (i) _
(2) : A¢10 + 4K2 %0 ° 0 etc. (26e)

Thus, the sequence of inner solutions satisfies Poisson's (or Laplace's)
equation. The inhomogeneous terms are either given or are known from the
lower order solutions.

Next an outer variable R = k,r = er is introduced, along with a sequence
of outer gage functions dvo)(e) (to be determined by matching asymptotically
the outer solution to the inner solution). Equation (23) can then be re-
written as

2 3 9? -
RrRm gt o Dezo R0 27)

(%)

If the outer solution is represented by

(o) _ (0)y,l0)
¢ " = \E ; 8y (€19, (28a)

then each term in the expansion obeys

(o) _
D¢W =0 (28b)

Clearly the sequence of outer solutions obeys the homogeneous Helmholtz
equation.

4,2.1.1.4 Inner and Quter Solutions and Results of Asymptotic
Matching

The inner and outer gage functions 6$§) and 553) are regrouped to form
a three-term asymptotic sequence to the required order of accuracy. Then the
first three terms of this new gage sequence are:
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61(5) =1, log (e/2), log? (e/2)

(29a)

§,(e) = (e/2), (e/2)1log (€/2),(e/2) log? (e/2) (29b)

§5(e) = (e/2)%, (e/2)? log (e/2), (e/2)% log® (e/2) (29¢)

The matching is done, term by term, for the coefficient of each 6 (n =1, 2,
3). Such regrouping is absolutely essential for the success of the asymptotic
matching principle as given by Van Dyke(23). The reasons for regrouping are
thoroughly discussed in a series of papers by Fraenkel(24), The point here
is that a given function can be expanded in several different sequences of
gage functions 6($) and 6(3). Since the function is given, there can be no
question on the validity of any of these expansions. However, not all of
these expansions satisfy the asymptotic matching principle of Van Dyke(23).
In other words, it is possible to have a situation in which the expansion is
correct, but the inner and outer solutions cannot be matched. Such is the
case in the present analysis if term by term matching is required for the
gage sequences éu% and § 8). If the regrouping is done according to equa-
tion (29), however, the inner and outer solutions can be matched. After a
step-by-step application of the asymptotic matching principle, it is found
that in the inner region (but outside the jet):

oli) o all) Bél) log # + ] ?'”(cﬁl) cos ne + 0{1) sin ne) (300

00 " "o N i n
¢é;) - AéZ) (30b)
3
¢§;) . Aé ) (30¢)

(1) . 208) , g(8) Joony § () (4)
01, = Ag *+By Tlog ¥+ 1 PT(C, 7" cos ng + D7 sin nb)  (30d)

2)

- 2K? F(Cil) cos 6 + Dgl) sin 9) - K% ¥¢ al

0
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¢§8) = Aés) + 865) log ¥ + ] z . ?'n(Cés) cos no + Dﬁs) sin né)
- 2k? ¥(log K +§ - % - %;)(Cgl) cos 0 + Dil) sin §)
- ke Al e -k 81 R2(r0g ¥ - 1)
- 2K2 ¥ log ?(Cgl) cos & + Dgl) sin 8)
+ K2 E — VH{Z (Cil) cos no + Dgl) sin ng)
n=2 r (30e)

where Aém), Bém), Cém), Dém) (m=1,2, ... ,n=1, 2, ...) are constants,
y = 0.57721 (Euler's constant) and i = v=1. 1t is observed that the. lowest
order solution behaves as log r as r ~ », and that both ¢6i) and ¢ % are
constants (actually the latter result comes from matching inner ané outer
solutions to all orders). Thus the lowest order solution is a "classical"
solution to Laplace's equation in the sense that (3 ¢36 /3r) vanishes at
infinity.

Similarly, the matched outer solution is given by

= [AOl + Agp(3) Toaly) + A03(%)2] Hél)(KR)

+ (SR (kR) (A, cos o + B, sin 0)

-+

(%J’ Hé”(KR)(A21 cos 20 + B., sin 23) + .

21

(31)
where Agy, Ag2,> Ag3s A11» Bi1, A21, and Bpj are constants and Hn(l) (n =0,

1, 2,...) are Hankel functions. The outer solution coefficients are given in
terms of the inner solution coefficients by
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- (1)
A1 = 27 Bp (32a)
. 7 o(4)
Aoz = 77 Bg (32b)
- (5
Aoz = %7 By ) (320)
and
. 1
All = 7mi K C§ ) (33a)
By, = mi K Dgl) (33b)
- i ope (1)
A21 =i K C2 (33¢)
e o1 k2 pll)
821 mi K D2 (33d)
Similarly, the inner solution constants are obtained from
(1) _ 21 >
Ag ' = Agp 1+ 5 (Tog K + 9)] (34a)
. (2) _2i
Ao " = T Ao (34b)
(3) _ 2i
\ A — A
I 0 . 02
" " , (34¢)
4) 2 5 ral
Rg " = Rgp (1 + == (log K+ ¥)] + 7= Aqs
tc (344d)
) Y. 5) _ 23 ~
I Al = a1+ 2 (tog K+ 9]
A (34e)
!
A
V4
f‘; 41 =t
|
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It is observed that the outer solution is matched to the inner solution
outside the jet (i.e., both of these regions are 1n the quiescent region) so
that in this section K2 is to be replaced by (x{ )2 and ¢g§)
tion outside the jet.

The above results are obtained by a systematic application of the
"strict" rules of singular perturbations. In this particular example, it is
also possible to circumvent many of the algebraic steps that lead to the
final results, by observing that the outer solution can be written down to
any order of accuracy. Rewriting this solution in terms of the inner vari-
able and expanding in terms of e, there results

¢(0) = Z

H(l)(KR)(E)n rA cos né + B . sin ng + (35a)
n 2 |.n1 nl a

or

6% = ag; 11+ 2 (log ¥ + T0g K + 7))

. © _ y |
-1 ) {n - D! (A, cos np + B . sin n@)
n L n.n nl nl
n=1 K r
2i € (35b)
+nA11092+"'
(i) (i ) . (35¢)

s0. *+ 108(5) 25,

From equation (35), it is possible to deduce the form of ¢( and th? §e1a—
tionship between the near-field coefficients Ao(l) (1) C (1) and
the far-field coefficients Aqy, Ajy, and Buj. This relat1nnsh1p is given by
the asymytotic matching principle for n = 1, 2. Furthermore, it also appears
that ¢(1 = constant, and that Aj; and B,; are proportional to Cp and Dy
Thux part of the nonsymnetric outer solution is matched to the nonsymmetric
part of the lowest order inner solution.

4.2.1.1.5 TInner and Jet Solutions and Results of Matching Pressure

is the inner solu-

(1),

and Particle Displacement Across Jet Boundary

The sequence of inner equations (26) for the velocity potential is also
satisfied by the potential inside the jet, ¢Su)' Thus the lowest order solu-
tion inside the jet satisfies

- NG
A&éé) = "j%)' (36a)
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and an application of Gauss' theorem shows that

(J)

- 30
“ A@ég) Fdi de = 27 = j %- ds (36b)

a ad |

where a is the jet cross sectional area, 3a denotes the jet boundary and ds
is the arc length along the boundary. Similarly, from equation (26sa)

(1)

. 30 |
” ioli) 7 g4r do = 0 = J aono ds 360

a da

where a is the annular area between the jet and a large circle of radius r.
The boundary 3a consists of two parts, namely, the jet boundary and the

circle. Combining equations (36b and 36c) and matching condition (21c)
yields

3
2m k = J aOHO ds (37)

circle

Finally, the contour integral in equation (37) is evaluated explicitly using
equation (30a). The result is

(()l) - (38a)
By a completely analogous argument, it is found
* (38b)
') = % a [(KIV P e o12("2)2]
and
(8) _ 2 1oty (1 .00) o g g - @ ([ o) e oo
= = K d o] r ar K\
Bo " lf 1" %00 + R )00 (38¢)
a

Note that the interface matching conditions [equation (21)] were applied for
each coefficient of the gage functions. In particular, ¢6}) = constant out-
side the jet implies that ¢ { = constant inside the jet.

The remarkable outcome of this asymptotic expansion is that the outer
field, to the required order, depends only on the lowest order inner and jet
solutions. Both of these solutions satisfy Laplace's equation.
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4.2.1.1.6 Calculation of the Acoustic Power of the Source

The acoustic power of the source is calculated by integrating the product
of the pressure and normal component of the velocity over a large cylinder
enclosing the jet. The mathematical technique is fully described by Morse
and Ingard(zs).

Expressing the velocity potential in the far field as

_oenll) -
= %‘ Hn (LO K1 r)(An cos nyo + Bn sin ne) (39a)

a comparison of equations (39a) and (31) shows that

Ag = Agp * AOZ(%)2 109(%) + 1\03(%)2 (39b)
Ap = (PR (39¢)
By = (308, (394)
Ay = (51° Ay (39¢)
52 ) By (39£)

where coefficients Ay, By (n =0, 1, 2, ...) are, in general, complex.

The expressions for the perturbation pressure and radial component of

' the velocity are given by the x-t Fourier inverse of equation (39a),
) )
. ) Wy
j hy
! 2 T 9y ( . (1)
‘ _ e 3 - - i n
i P N S ey} | explilw wO)X/U jwtlw g Hn (An cos nf

+ B sin n3)do
n (toa)




[¢]
1 - M
k ( + (1)
= 0 i - - s nb
¢ = Z?—E{U | explilw - w )x/U - iwtlK Z Hoot (A co
w
[¢]
1+M
+ B, sin nd)dw (40b)
and the radiative power of tne source is
2n
Dl 4
P iU j P, d8 (41a)
0
where Wy
1 -M .
in =
Po = J wduile (R cos o + B sin ng) 2 (41b)
we, n
1+M

P it the total power and Py is the "power in a plane*'" whose ¢ ._entation is
determined by the polar angle 6. Observe that the integral for Fg is eval-
uated over a frequency range defined by the Doppler limits.

Consider now a very brief discussion of the Kelvin-Helmholz instability.
This classic problem has been examined by a number of authors including
Miles(26), Batchelor and Gill(27), and more recently by Jones and Morgan(28).
The conclusion of Jones and Morgan, although only qualitatively relevant to
the present problem, is that the long time solution of a harmonically pulsat-
ing source (switched on at t = 0) is a harmonically varying (in time) acoustic
field which contains an additive element that grows exponentially with dis-
tance downstream but decays exponentially from the jet interface. 1In fact,
the complete solution to the present problem can be written in the form
VT oo+ 4 where ¢ is obtained from the above analysis and ¢{ is the unstable
solution. The approach at this point is to ignore the unstable contribution
to the acoustic field. Of course, this approach cannot be justified mathe-
matically. On the other hand, the physical justification is clear, since
the actual jet is reasconably stable with a bounded acoustic field. It should
be noted, however, that there are Mach number limitations on this physical
justification [Ffowcs-Williams(29)].

*
Py is also proportional to the power per unit polar (or azimuthal) angle 6.
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This concludes the formal analysis of this section. These results are
now applied to two specific jet configurations.

4,2.1.1.7 Circular Jet - Radiation from Off Axis Sources

Mani(l7) has examined theoretically the radiation from sources convect-
ing along the centerline of a circular jet. The present asymptotic theory
is used to extend his results to the off-axis case in thr low frequency limit.

The geometry of the jet is shown in Figure 4-4. The jet boundary is
given by R = 1, and the source is located at R = Ry < 1 and O = Oo.
The lowest order inner and jet solutions obey Laplace's equation [(26a

and (36a)] . These solutions are denoted by ¢(1) = @66) and ¢ 2) = ®ég) respec-
tively. Thus

¢ A0+BologR+

1~ 8
o]
3

/ n 5 A
\Cn cos nd + O, sin no) (422)

(2) ay * log r + }

¢ Rn(an cos nO + [ sir no) (42b)

1

where Ag, BO, ag, Chs Dn’ o and Bn (n =1, 2,...) are constants. The jet
solution may be rewritten by using a well-known Fourier expansion of log r
for R > Ry

(2) » no1 %" \ 3
T =g v Tog R A ) L f, RT - 5 (57) cos migicos nd
o n 1 RO n . .
+ )y (B R Py (750 sin n@o]s1n n@
n=li (42¢)

The constants AO’ Bg, «.., etc., are determined by matching the pressure

and particle displacement across the jet boundary, R = 1. The results of
this matching are

B, = K
0 ] (43a)
R, cos n@
.2, 077 0 =1, 2,
Cn""r‘]‘K'l'+ ‘.;)rh n ’
v (43b)
n 3
D :_g(,Rg\-i.n_ndo n‘ 1; 2’
nooon oy (43c)
where v = m/mo and Pyp = pl/r:.
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It is observed that as r - «, coordinate systems (R, ©) and (r, 6) are
related by

R
- 0 e
r - R[l - R COS(O Oo) + --'] (443)
Ra
6 =O+-R—s1’n(® - @0) + ...
(44b)
and
"o
= ~ —= C0S - ...
R =r[l -~ cos(o 8! ] (44c)
"o
- 0 inia L +
0=86+ - sin(6 90) (444d)
where rg = Rg and 6, = Og + 7. The point (ro, 8g) denotes the coordinates

of the jet axis relative to the coordinate system attached to the source.
After using coordinate transformation (44) in equation (42a), it is found
that, as r » «,

r r
¢(1) = A, * By log r - 80[79 cos(e - 00) + %(79)2 cos 2{9 - ao) + ...
cos 6 sin 6
MO T
4 €08 20 ¢ 4 ¢ r,cos B, - D, rysin g,
r? 2 10 0 10 0

SinTEQ (D, + C, ry sin 0, + D, r, cos @O) o

L 27 "1'0 0 "1 0

(«5)

Thus the far-field coefficients (32) and (33) are yiven by euqations (38) and
45) as

(4€a)

(46b)

(46c¢)




A,. = mi K; K 1y cos 00(2/9+ - 1)

1 (46d)
Bll = i KI K rg sin GO(Z/Q+ - 1)
(46e)
A, =T (kD)2 « r2 cos 26, a7/a"
21 2 1 0 0 (46£)
B,, = i (K+)2 x r2 sin 20 Q'/Q+
0
2l 2z 7l 0 (468)

+
_= 2
where Q 1+ Py K°-

Before the numerical results for the total power P are presented, some
possible nonuniformities in the asymptotic expansion are priefly discussed.
It is seen from Figure 4-2 that K¥ is of order unity; therefore, the har-
monic terms Aj] ... Bpj exhibit no nonuniformities. ,On the other hand, it
is seen from Figure 4-3 that terms proportional to K; may become much larger
than unity. In this case the asymptotic expansion has a small range of va-
lidity restricted to very small values of ¢. To extend this range, observe
that the nonuniformity comes from the axially-symmetric terms. An examina-
tion of the structure of the complete axially-svmmetric solution, reveals that
the nonuniformity arises from a binomial expansion. To elminate this diffi-
culty, the constant Ay given by (39b) is replaced by

Al = o (47)
0 £y2 € _ €y2
Aoy = Ao2(@)* 199 7 - A3lp)

In the limit as € -+ 0 equations (47) and (39b) are clearly equivalent. How-
ever, for finite values of €, (47) has a much wider range of validity than
equation (39t) in this particular example.

In Figure 4-5, a comparison between the exact calculations by Mani and
the results of the present asvmptotic theory for the total radiative power
(41a) is showi.. The power is shown to be a function of the convective Mach
number and the source Strouhal number. It is seen that the agreement between
the two results is excellent over the entire Mach number range (up to 0.9)
aad a wide range of Strouhal numbers.

By differentiating the expression for the velocity potential (45) with
respect to the source coordinates, it is a simple matter to derive the pres-
sure and velocity fleld of an off axis quadrupole shielded by a circular jet.
For example, 32¢(1)/9r0 3 8g 1s the velocity potential of an (r - 6) quadru-
pole whose radiated power can be readily obtained.

A complete physical interpretation of these results is given by Mani(l7).
To reemphasize, however, the above calculations show the frequency dependence
of convective amplification. It is known from experiments [Lush 30)] that
the data for the sound pressure level as a function of directivity angle (at
49
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constant source frequency) is under estimated at low frequencies by the Lighthill
theory. Also, the Lighthill theory over estimates the sound pressure level at
high frequencies. This is interpreted to mean that convective amplification is
frequency dependent. Furthermore, the results in Figure 4-5 show such dependence
for the total power. Of course, the connection between the results of Lush and
that in Figure 4-5 is qualitative in nature; this will be further discussed in
Section 4.2.1.2.

An extremely important point is that acoustic shielding is confined to
the refractive zone of silence, but shielding is more than refraction since
it affects the radiated power. In other words, measurements outside of the
zone of silence would show negligible shielding. Such measurements are in-
sufficient, however, for the computation of total power. Thus, to look at
the effects of fluid shrouding or shielding, the sound pressure level must
be obtained in the zone of silence.

4.,2.1.1.8 Elliptic Jet - Radiation from Axial Source

Consider an elliptic jet whose semi-axes are given by a, B > 0 where
o« > B. The source is located at the center of the ellipse. Introduce
elliptic coordinates (u, v) (0 <y < o, 0 < v < 27) by the transformation

r = % /cosh? ¢ - sin® v 0<r (48a)
g = tan-!(tanh u tan v) 0<6<2n (48b)

where a = 2va2 - 82 is the focal length and (r, 6) is a polar coordinate
system (Figure 4-6). The equation of the ellipse is given by

AT log[(a + 8)//a% - B7].

The lowest order inner and jet solutions obey La 1ace's(§9uation (26a)

and (36a). These solutions are denoted by ¢ (1) = ¢68 and ¢ ¢ég) re-
spectively. Thus
¢(1) =Ayg*tByut ] Z . Cp e”™ cos nv (49a)
L I T I E- I 7 Le™ cosnycos 2T
0 4 n___ln 2
(49b)

-+
nes1 g

o Sinh nu cos nv
1 n
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where R BO, ags Cps Qp (n =1, 2, ...) are constants, again to be deter-
mined by matching pressure and particle displacement across the jet boundary.
Observe that the terms in equation (49b) that do not involve any of these
unkown constants represent log r in elliptic coordinates.

The matching across the jet boundary yields

BO =K (50a)
nm
CO0S =~
C = _4; < 2 n= l, 2, L
n n + _ —2nu1
Q-0 e (501)
and
a = 0 (50c¢)
R B
2 + -4y (50d)
G |
Q= am = / ana Q: =1 +p K2
where, as before, X = W% P12 = P1/Pp ) - Y12 ¢t

The transformation to elliptic coordinates (48) simplifies to

4 ay2 cOs 20 j
w=log - (7). (51a)
veo o+ (32 dB. (51b)

as r + «© and, in the same limit, it is found that

. n+2
v -nLl - a a
e CCS nv = (EF)Z cos ng + n(EF) cos(n + 2)8 + ..

A n=1, 2, ... (51c)

. Using equation (51) in (49b) and the general results of the asymptotic theory,
it is found that the far-field coefficients are given by

A A, = — (52a)
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: . T EEE"

= -3 +2- 2 i2 (52b)
AO2 imTa B K[(Kl) FoppK (KZ) 1
= —ir(kT)2 - ty2 (52¢)
Ao3 1[(K1) t % K(Kz) t,]
where
= ___u+8_,l.§_lri _zl + w4
tl Ta B K{OQ 2 7 o 2 (1+ T (]09 Kl + Y)]
1
= (1 = B/(l) Q+ j (U. 3)2 Q_}
a+ B (52d)
and
1
= -2 at+ i .l_ﬁ.
t2 T a B 01 ¥ log > " .
F i
2""(2 012[1 + = (qu Kl + ;’)]
2 _a-s
-~ a + 3
- % (1 - g) S;___ —_
gl_ - ((Y - ,‘%)2 (526)
! Q— a + B
) A =B =0
1 11
3 ! (52f)
- B
. 1+ (5)?
' A, = L (k)2 w(a? - 82) ot B
i 52
’ 21 4 ‘11 at @ 8 (52g)
: Q a+ B
"
(52h)
. 821 =0
r The asymptotic expansion appears to be uniformly valid for all values of
: 8 < a. Thus, this low frequency theory is not restricted to configurations
N with "low departure from axial symmetry."
7
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The power, Py, (41b) in a plane inclined at an angle 8 relative to the
major axis is calculated as a function of 6 for parametric values of ¢ = kpo
(¢ = 1) and B. The results are shown in Figures 4-7 and 4-8 for two differ-
ent source Mach numbers. At given values of 6, 8, and M, e.g., 0 = 0°,

8 =0.5 and M = 0.7, the source radiative power decreases with increasing
source frequency. The power of a given geometry at a fixed value of 8 and
for moderate values of ¢ decreases with increasing Mach number. These obser-
vations are consistent with the results in Figure 4-5 for a circular jet.

The difference in acoustic power between the quiet plane (6 = 0) and
the noisy plane (6 = 90°) increases with the source Strouhal and Mach numbers.
According to these calculations, the difference in power between the two
planes is completely negligible at low frequencies and is on the order of a
few dB at higher frequencies.

The total radiative power of the source (4la) varies inversely with the
jet cross-sectional area at given Strouhal and Mach numbers. This observa-
tion is easily deducible from the results of Figures 4-6 and 4-7 and agrees
with the fluid shielding hypothesis of Mani. 1In simple terms, the radiative
efficiency of the source varies inversely with the amount of moving fluid
surrounding it.

4.2,1.2 The Directivity of Sound

4.2.1.2.1 1Introduction

In Section 4.2.1.1, the results for the radiative power of a source
wurrounded by an arbitrary jet were derived. These results showed that
acoustic shielding had a significant effect on the power; the purpose of this
section is to investigate the effects of shielding on the directivity of
the sound.

The present analysis is similar to the one presented for the power,

therefore, only the basic framework without details will be developed. A
comparison between theory and data will be presented also.

4.2.1.2.2 Formulation of the Problem

It is again assumed that the acoustic field is generated by a moving
point source translating with velocity U. along the axis of a slug flow jet
of arbitrary cross section (Figure 4-1). The source is pulsating with radian
frequency w, in its own reference frame. The velocity potential, ¢, of the
acoustic field obeys

- 2 - -
(%T + U g—;) ®-c2®xx—c2 AD

, (53)
= exp (—imot) §(x - Uct) S(v) 6(z)
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where, as before, U and ¢ are sectionally constant representing the mean jet
velocity and acoustic speed. Note that here the convection speed U. need
not be the same as the jet velocity U. Also, A denotes the Laplacian in the
transverse variables.

It turns out that the most convenient representation for the directivity
if obtained by taking Fourier transforms with respect to x, rather than t as
in the previous section. Thus define

7 = <1/¢75)[ e-isx odx (54a)
whose inverse is
b - (1//72?)] 15X Fus (54b)

where s is the transform variable. After applying the above transformation
(54a) to (53) and introducing a new dependent variable,

¢ = -(ZW)S/“ cé ® exp [it(wO + UCS)] (55)

it is found that the velocity potential ¢ obeys, in the jet and quiescent
regions, respectively,

Jet: A ¢ +KkIK5¢ = 6(r)/r (56a)

Ambient: A ¢ +kiK§¢ = 0 (56b)

where K,2 = (€ /ey (1« - Mo]? - o (36¢)

and K12 = (1 +\1C0)2 - ot (56d)
Here kg = mo/cl, M. = UC/cl, M o= U/ aind ¢ = s/ko-

Thus, the convective Mach number and the jet acoustic speed are denoted by
Mc and M respectively. The Fourier transform variable, s = k,0, can be in-
terpreted as an axial wave number.

Without going into details, it may be shown by applying Fourier trans-
formation (54a) to the matching of the pressure and particle displacement
(16) across the jet interface, that
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(57a)
< 4 T e
on r o= r.
1
J g e et
)T )
B (57b)
This time the meaning of « is slightly different, namely
1 + M -
N - L
X = T';~('T\T‘" DR (57C)
<

o1 = pz/ol and i, denotes the solution in the jet while f1 in the ambient
medium. Of course, 3/0n stands for differentiation in the norma?! direction
to the jet-ambient region interface.

4,2.1.2.3 A Solution of the Problem

Again the problem to be solved is Helmholt:'s equation (56) with suitable
matching conditions across the jet boundary (57). In fact equations (56)
and (57) are exactlv the same as (23} and (21) so that the low frequency solu-
tion of Section 4.2.1.1 is directlv usable for the directivity provided that
the following change of variables cccurs:

Correspondence Principle

Power ——= Directivity

l BE
) i ‘)
(K, g K,°

Thus the details of the asvaptotic expansion will not be reproduced in this
section,

2.1.2.4 Calenlation orf the Directivity of the Source
While the details ol the asvmptotic matching are identical tor 6, ‘

ard directivity caleculations, the caleulation for the acoustic 1.

ceeds somewhat differentlv. The objective now is to obtain ti.¢ -
resentation for the pressure. 38
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In the outer field, from equation (39a), the velocity potential is
expressible as

o(®) = 3 (Acosne +B sinne) H{M (k_K,T) (58)
n=0

where the A;'s and B,'s are defined by equation (39). The pressure in the
acoustic far field is simply proportional to the time derivative of the
velocity potential so that using equation (55) the following expression
results:

oo

-ip . ~it(w +U_s)
p = 1 j’elsx ds e ° ¢ (w, +U_s)
4n2c,? ° ¢
2 -0
o0
. (1)

X (Ancosne -+Bn51nne) Hn (koKlr)

n=0 (59)

For the calculation of power, an integral of the type in equation (59)
was evaluated numerically; for the directivity, this integral may be eval-~
uated by the method of stationary phase. The entire procedure is given by
Carrier, Krook, and Peatson( s with the final result:

-imo(t - R/cl)

_ P1% °
T 2
mic, (1 - Mccose)
X 2: (Ancosne -+aninne)| B (60a)
n=0 T=0x

where ox is the point of stationary phase given by

cos0
Oy =

- T - M _cos®
c

(60b)

Very loosely speaking, R is the distance from the jet and © is the angle
with respect to the jet axis. The final expression for the pressure is valid
as R » o,

One can make a number of observations with respect to equation (60a).
First, the acoustic pressure decays as R™1 in the far field; the phase dif-
ference between the source and the observed signal is simply the travel time
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R/c,, and a convecting mass source has an explicit convective amplification
factor of (1 - M.cos 9)'2. Additional (implicit) convective amplification
is present in coefficients A, and B, because of fluid shielding.

4.2,1.2.5 Directivity of a Slot Jet

First it should be emphasized that the directivity of a slot jet in~
volves two angles; one is the familiar angle to the jet axis ©, the other is
the azimuthal angle 6. To obtain the pressure field of a convecting source
in an elliptic or slot jet, expressions (56) are used in the definitions of
A, and B, along with the correspondence principle, of

A major difference between quadrupole and simple point sources is that
quadrupoles have a higher explicit convective amplification factor. In the
following discussion, the ratio (or t"he difference on a logarithmic scale)
of the far-field pressures at two different values of azimuthal angles (8)
is shown as a function of the angle to the jet axis (0). The effect of the
explicit convective amplification cancels by taking this ratio so that it
does not matter whether the pressure for sources or quadrupoles are used in
the theory data comparisons. It is possible that quadrupoles themselves
have an intrinsic azimuthal directivity; this is the case for an isolated
quadrupole but is not likely the case for an "equivalent" quadrupole that
represents the noise of an elliptic or slot jet.

The experimental data of Olsen, et al.(18) for the sound pressure level
(SPL) of slot jets were reduced at constant source Strouhal number; the
length scale used in the definition of the Strouhal number is the major
diameter of the jet. The observed frequency is denoted by f. In Figure 4-9,
the difference in sound pressure levels* between the noisy (vertical) and
quiet (horizontal) planes is shown as a function of angle to jet axis at
three values of source Strouhal number. The largest difference occurs at
0 = 30° to 50°; this difference increases with frequency and is completely

negligible at 90° to the jet axis.

The trend with velocity is shown in Figure 4-10. The maximum ASPL in-
creases with jet velocity; however, at the lower jet velocity there is some
disagreement between theory and experiment, at least with respect to the
absolute levels. However, the insensitivity of the noise difference as a
function of the angle to jet axis is reproduced well.

The effect of jet temperature at constant source Strouhal number and
jet velocity is shown in Figure 4-11. The maximum value of ASPL increases
with jet temperature, consistent with Mani's findings on acoustic shielding

of round jets.

Two remarks are in order to explain why the agreement between theory
and experiment cannot be more than qualitative., First, the data show con-
siderable scatter; obviously this is because the differences in noise (on

*
For the theoretical calculations, the sound pressure is defined as
10 log|ylp|? where p is given by equation (60a)
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the order of 2 to 4 dB) are comparable to the errors in the measurement (prob-
ably on the order of 1 dB). Second, the analysis is only approximate.

4.2.1.2.6 Conclusions

It is shown that, in the low frequency limit, the inner and outer solu-
tions obey the Poisson and Helmholtz equations, regpectively. The appropri-
ate inner length scale is the jet diameter and %he outer length scale is the
wavelength. The outer solution, to order (e/2)< where ¢ = woa/cl, depends only
on the lowest order inner and jet solutions. The error in the outer field
is of order (e3loge).

The asymptotic results for the circular jet indicte that the present
theory is accurate to values of € up to 0.7 or 0.8. The nonuniformity of
the expansion associated with the limit M + 1 {e fixed) can be eliminated,
for the most part, by expressing the coefficient of the axially symmetric
part of the far field as a fraction. As € -+ 0, the power of the jet becomes
independent of jet shape. This conclusion appears plausible since in this
limit all jets appear in the far field as '"thin line." The results for the
elliptic jet offer one qualitative explanation for the presence and location
of certain experimentally observed quiet planes. This explanation is purely
acoustic and centers around the shrouding effect of the mean flow.

4.2.2 Convecting Sources in an Annular Jet

The radiation from a convecting monopole source shielded by an annular,
doubly infinite jet of fluid is calculated in this section. The jet velocity
is idealized by a constant profile (i.e., slug flow) and the source is of a
single frequency in its own moving frame. The results of this model problem
are used to throw some light on the jet shielding hypothesis for multitube
suppressors and to rationalize one empirical expression for the effective
number of radiating tubes. The theoretical predictions for the pressure are
compared to experimental data under Acoustic Shielding Experiments (Section
6.0).

4.2.2.1 The Radiated Power

4.,2.2.1.1 Introduction

A typical suppressor nozzle of the multitube type is shown in Figure
4-12. This suppressor is generally an array of "small" jets of diameter d
geparated by a distance L. This array is usually two-dimensional; the basic
idea is to divide the exhaust of an engine into a number of smaller jets.
Near the exit plane of these jets (assume coplanar exits), where the high
frequency noise is generated, the aerodynamic interaction between adjacent
jets is small if L/d >> 1. Thus, the high frequency power radiated by the
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suppressor should be given by the product of the power of a single jet and
the number of jets. It is found experimentally that the actual radiated
power is considerably smaller than this product (Gray, et a1) (32)

The physical model used here separates the array of jets into two
classes: (1) the outer row (usually a circular row) of jets and (2) the
inner jets. In the mathematical model, the outer row of jets is represented
by an annular jet with a slug velocity and temperature profile (Figure 4-12).
The inner jets are represented by convecting sources; these sources are simple
mass sources. Generalization to higher order sources can be made. It is
known that the "source" of jet noise is of the quadrupole type - the choice
of a mass source is motivated by simplicity, with the expectation that the

results of this theory will provide the qualitative features of the actual
acoustic field.

The purpose is to derive the expression for the far-field radiated
power of a convecting source surrounded by an annular jet and to show the
dependence of this power on various parameters. Finally, a comparison is
made between theoretical and experimental results. This comparison shows
that the high frequency power reduction in multitube suppressors can be
explained by acoustic - mean flow interaction.

4.2,2.1.2 Formulation of the Problem

It is assumed that the acoustic field obeys the linear wave equation

9 79 2 o2 o2 =
('B_t' +U§§-) ¢—c¢xx—c At =1D (61)

where ¢ is the perturbation velocity potential, D is the disturbance that
generates the acoustic field, _t is time, and x is an axial coordinate along
which the fluid velocity is (U + ¢4).

The undisturbed speed of sound and the undisturbed fluid velocity in
the x direction are given by ¢é and U respectively. The geometry of the
problem and the variation of U and ¢ with respect to the transverse variable
(y in the planar case or r in the axially symmetric case) are shown in

Figure 4-12, The operator A represents the Laplacian in the transverse
variable.

There remains to model the source term D. Here guidance is provided by
the simplicity and the success of the approach of Mani{17) | who assumed that
-iw t ~ .
D =e ° &(x-Ut)S(P) i=/T (62)

where w, is a given constant and § (P) is a symbolic representation of the
§-distribution whose support _jis the point P. It is also assumed that the
source is in region @ or .
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The solution to equation (61) represents the acoustic field of a con-
vecting point mass source whose strength oscillates at frequency wy in the
reference frame that moves with the source. The source is surrounded by an
idealized jet system whose velocity and temperature (essentially cj) are
represented by constant (i.e., slug) profiles. The assumption that the source
convection speed is the same as the jet speed is made for simplicity (i.e.,

Ue = U). This restriction will be relaxed later. The primary interest is in
the power radiated in the far field, the dependence of this power on the jet
velocity and thickness and on the location of the source.

Across the jet-quiescent region interfaces the continuity of the pertur-
bation pressure, p, and the particle displacement n are required. The ex-

pression for the perturbation pressure is easily derivable from the x-momentum
equation, and is given by

p = o (o, +l~J¢x) (63)

where § is the undisturbed density. Under the additional assuvmption that
the undisturbed static pressure is also continuous across the interface, §
and ¢ cannot be specified independently.

The particle displacement n is related to the transverse velocity com-
ponent through the equation

3¢

3”+U%%=g—y@ or = (64)

3t

The interface conditions (63) and (64) are satisfied on the surfaces
y=+zta, y=13b (orr =a, r = b), that is, on the mean location of the inter-
face, consistent with the linearization assumption already invoked in imply-
ing that equation (61) holds. Equation (64) implies that there is negligible
mixing between the jet and the surrounding medium, that is, the interface
consists of particles of fixed identity.

The governing equation (61) is hyperbolic and it requires initial con-
ditions for uniqueness. These can readily be provided (for example,
¢ = 3¢/3t = 0 at t = 0). 1In the present context, however, the interest is in
the long time solution as t » =, That is, the "periodic" solution that re-
sults after all the transients associated with the starting of the source (at
t = 0) have become negligibly small is desired. The time dependence in
equation (61) is extracted through Fourier transforms, as follows:

Defining i
¢* = ._1__ I eiwt ) dt (658)
aw L
and (65b)
¢ = L J e-iwt o* dw
en ! |
R .
( i
\\/ﬁ
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and o* = ¥ e 0 (65c)

so that ¢* = ¢* (y or r; w). The form of the x-dependence in (65c) can be
obtained by a Fourier transform in x or by observing that (65c) is consistent
with the time transform of equation (61) and all boundary conditions. The
resultant equation for ¢* is given in the still-air region (U = 0) by

AFF 4 K2 (K2 = - ZL(P)_ (66a)
C1¢2n u
and in the jet region (U = v) by
—_ aptys — 66b
Ag* + kb(KZ)’- v* =0 (66b)
or
AGF - KI(KD)F o* =0
o 02 (66¢c)
where ko = wO/cl.
The propagation constants KI, K; and K; are given by
(k)2 = 2 - fx - 1200 (672)
(K))? =Ty, 5,y = (x = 1)2/M
2 12 21 ' (67b)
“y2 _ 2ym2 _ =
(Kp)™ = (k= 1)°/1° - Ty 0p (670)

where x = w/wo, M = U/Cl’ Pyy = pz/p1 and FlZ = I‘l/I‘2 where

o

—3
1]

-1

The gas constant is denoted by R and C_ is the constant pressure specific
heat. An additional assumption in dergving (67b and c) is that the gas is
thermally perfect. The interest is only in the case when (K’i‘)2 > 0 (other-
wise the far-field solution dies off exponentially in the transverse vari-
able), that is 1/(1 + M) <« < 1/(1 - M). When (K§)¢ > 0, that is
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1/(1 + M) <« <1+ M/Tyy p21, equation (66b) 1s used; otherwise (66c)
applies. Of course, (66b and 66c) are really identical - the distinction

is artificial and is made only to enable one to take the positive square root
of Ky% in writing down the solution explicitly. .

To complete the formulation of the problem, a Fourier transform of the
matching conditions for the interface is performed. In the still-air region,
the transforms of equation (63) and (64) are

Tl (68b)
on

n*

Ei_‘.

and in the jet regioms,

*x = 7 m - 3
PP = 1Py @ (68c)

X F=_1'_§-__1>: (68d)

where 3/3n denotes normal differentiation to the interface in the transverse
plane.

Thus the canonical problem to be solved is equation (66) with matching
conditions (68) across all interfaces.

! 4,2.2.1.3 The Planar Problem

’ Consider a convecting line source with instantaneous coordinates at
b (Ut, yo) where y, = const < a. Let this source be surrounded by two plane
‘ i jets whose boundaries are given by y = + a and y = + b (b > a) (see Figure

4-12). The objective is to determine the effect of the fluid jets on tue
power radiated by the source, and to examine the sensitivity of the power
on the precise location of the source (i.e., on yg).

’

i
+
i
:
i
"
i
Wt

In some applications, a source of noise (not necessarily a point mass
source) is surrounded by a real jet. One such configuration was investigated
experimentally by Cowan and Crouch(33) in connection with sound transmission
through a two-dimensional shielding jet. Another application is encountered
in jet noise suppressors where the outer row of jets surround the inner rows.
In our idealized model, the inner rows are treated as noise sources and the
outer row as the shielding jet. Of course, in a suppressor the 'shielding
jet" is not planar but circular. It is quite difficult to solve the problem
for the circular geometry when the noise sources are off the axis, since the
flow field 1s axially nonsymmetric. To shed some light on the power radiated
by off axis sources, the easier planar problem is considered. Note that at
very high frequencies the difference between the circular and planar solu-
tions is small.
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. In this section, y is used to denote the transverse variable and

8(P) = 8(y - yo) with yy = a0, 0 <0 < 1.

index as the ambient medium.

<0< It is assumed that Ty, =1 and
p21 = 1, that is the jet is cold (Cl = ¢ = ¢) and has the same isentropic
The solutions to equations (66) are written
down as a linear combination of exponentials with unknown co-fficients.
These coefficients are determined by enforcing matching conditions (68)

across all the interfaces. For example, outside the jet,

— . +
o* = E exp(1k0 K1 y)

Ead

where E and E are independent of y and (69a and 69b) satisfy the radiation
The final results for E and E are

condition as ly[ - o,

me
j*2
="
O
[;N]
<\
[\N]
=
>~
o
ol
*

where ¢ = €y = ¢z and

+

~ , +
E exp(-1ko Ky y)

y>b

y < -b

x . + ~ I} +
A* = -2[—8 s1n(ako Kl) +q cos(ak0 Kl)][} cos\ako Kl)

+a sm(ak0 K1

Gl +
%2
with
ik b K] N oy
a=e cos[ko K2(b -aj); -1 %
and
ik b K} . ‘
B=1e cos[k0 K2(b -a)} -1k
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= -8 sm[ak0 Kl(l PO B B cos{akO Kl‘l 7 a)l

¢
1 . +
EI s1n[ko K2(b - a)]
2
+
K
2 —% sin[k0 K;(b - aNl
K)

(69a)

(69b)

(70a)

(70b)

(70¢)

(71a)

(71b)




Equations (71) are valid when 1/(1 + M) < x < (1 + M), that is when the
disturbance propagates through the jets with little "attenuation." However,
when (L + M) <k <1/(1 - M), K; is replaced by -i K;. In the latter case,
the disturbance is "attenuated" considerably [since %cos, sin) » (cosh, sinh)].
This region of attenuation cozigﬁponds to the classical zone of silence; see,
for example, Morse and Ingard . The perturbation pressure and transverse
velocity in the far field are obtained by inverting the Fourier time trans-
form (65b) and adjoining the exponential x behavior (65c).

The total power, P, radiated by the source, as computed by integrating
(p ¢y) around a surface |y| = const - » , is given by

P-P' 4P (72a)

where
p 1/(1 - M) 0 ka IEnlz .

= T U sy K (72b)
Py m le*]

and
£ I |
1= /7 Ul
E' E

with Py = pp = p. Physically, P' represents the radiated power in the upper
region (y > 0) and P' in the lower (y<0). When y, # 0, that is when the flow
field is not symmetric with respect to y, P' # P'., The mathematical details
entering in the derivation of equation (72b) are discussed by Morse and
Ingard( 5),

The following limiting cases of the general solution can be observed:

As b+ a

IE.IZ = |E:|2 = i5652 = __;_l:}~" (73a)
4k0(l’\1;‘
and
P =P = —F K&
0 4ncc U K+ (73b)
/(1 + M) ™1
or
p k
p 0 1 (73c)

0 = 4c’ (1 _ M2)3/2
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Equation (73c) gives the power radiated by a moving source in the absence
of the shielding jets.

The limit M - 0 (U » 0, ¢ fixed) is considerably more difficult to
obtain because the solution becomes unbounded [sece equation (66a)]. To
circumvent this difficulty, a variable £ is introduced,

g=X-1 (742)
and KI and K; are rewritten in terms of £. The result is
(74b)
KI = /I +M) -2, - 1 1 M <& 5.1 }"ﬁ
and

Ki = /T - €7] (74c)

As M >0, -1 <€ <1 and

K; x T E7 = K;. (744)

The range of x for which K, applies has shrunk to zero.

Also, « = 1 + Mf =1, Thus
- o] 1
112 _ vl2 -
[E'* = JE'1° = 3 TG (75a)

° %o (75b)
* =
P 4c

so that equation (75b) represents the power radiated by a stationary source
in the absence of jet shielding. Both equations (73c) and (75b) can be ob-
tained by other methods.

4.2.2.1.4 The Axially Symmetric Problem

As stated previously, the purpose here is to provide some theoretical
information on the noise radiated by jet noise suppressors. In the model,
the inner jets of the suppressor are represented by convecting acoustic
sources and the outer most row of jets by an annular plug flow jet. The
results of the analysis for the planar geometry showed that the total radiated
power is not very sensitive to the precise location of the source (see Figure
4-13). This is interpreted to mean that, even for the circular geometry, the
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individual noise sources (i.e., the inner jets) may be lumped into an effec-
tive source and placed on the axis of the annular jet.

Thus, the idealized problem that is solved is shown again in Figure
4-12. A convecting acoustic source (on the axis) 1is surrounded by an annular
jet, and it is desired to examine the effect of the annular jet on the radi-
ated power.

Let r denote the transverse variable, and let §(P) = 8§(r)/(27r). Since
the flow field is axially symmetric, consider regions , , and
only. The solution to equations (66) in region (:) is

7 =0 uft) k) 0 r> b 76)

where D is a constant and Ho(l) is a Hankel function. The analysis parallels
quite closely that of the previous section except that trigonometric and
exponential functions (of real arguments) are replaced by corresponding
Bessel functions. The details are omitted herein, but the final results are

D= —————0 (77a)

where

W kOaKl) (77b)

and

+ +
, L(k.aK. , k. bK.) 77
1) (k. bK 0%"2 02 (77¢)

h
01 , +
w(LObKZ)
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N(KObKE)

+

+ , +
2 Ko (1), o By o KoPKR) (774)
21 K w(kobkg)

The various cross products of the Bessel functions are defined by

W(Z, ©) = 95(2)¥p(z) - Jg(2)Vi2) (782)
= - ( i (78b)
Lz, £) = 3, (DY (z) - 3,(6)Y,(Z)
LY(Z, €)= (1) 1y(s) - dp(2)vaiT) (78¢c)
and
W(Z) = W(Z, Z) (784d)

Note that equations (77) and (78) hold when the disturbance is propagating
through the jet with little attenuation, that is, when 1/(1 + M) < « <

1+ M VT19pp7. When « is outside this range, Jg and Yy are replaced by

Io and Kg respectively, and Kf by K?. Note that Jg, Yg, Ip and Ko are Bessel
functions [Abramowitz and Stegun(34 1.

The total power radiated across a very large cylinder r = const -+ =
is given by

ya-m o,
. » ko
P= [y [D']? v dk (79)
y(r+m 1

P is obtained by integrating (p ¢,) around a large cylinder surrounding the
jet. The mathematical details are very similar to the planar case.
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4.2.2,1.5 Discussion of Results

The theoretical results for the plane and circular geometries are shown
in Figures 4-13, 4-14, and 4-15.

The total radiated power as a function of source frequency is shown in
Figures 4-13 and 4-15. For small values of (kga), the jet-source configura-
tion radiates more power than the corresponding freely moving source. This
observation is consistent with the findings of Mani(17) for a single round
jet. On the other hand, for larger values of kgpa, the jets provide consider-
able shielding in the sense that the total radiated power is reduced. It is
observed that the power reduction varies directly with the jet Mach number
and thickness.

Figure 4-14 shows that the location of the source has little effect on
the total radiated power. One interprets this result to mean that the pre-
cise location of the source is irrelevant; what matters are the jet Mach
number and thickness. Clearly, at low frequencies the radiated power is
independent of the details of the jet as shown by Balsa(35), Thus, at low
frequencies the location of the source is not important. This conclusion is
borne out by the results of Figure 4-14. What is surprising is that even
at higher frequencies the radiated power is relativel% igdependent of source
location., Similar results were also obtained by Mani 17 for a plane (or
slot) jet. Since the model has a highly-idealized shear layer built into
it, one may state that even in (real) sheared flows the precise location of
the source is not too important.

Although the presented results were obtained for cold annular jets
(i.e., pl/pz =1, cj/cy = 1), the general theory is applicable to hot jets
as well. The limiting case of 91/92 + = ig easy to obtain analytically. The
result is that the far-field radiated power is zero; thus the jets act as a
vacuum shield around the disturbance. The power radiated by the source,
which now is channcled down the inner cylinder r = a, is given by the wave-
guide solution for which p = 0 on r = a. -

Using the above results, a possible explanation for some of the experi-
mental results observed from suppressors is now proposed.

Consider an idealized model in which the radiated noise from a jet
engine suppressor may be divided into twe distinct spectra, one centered
about a very high frequency, the other about a very low frequency. From
dimensional reasoning, it is plausible that the high frequency noise is
generated near the outlet of the suppressor tubes, whereas the low frequency
noise comes from the region where the individual jets from the tubes have
merged into a single large jet. 1In the usual engineering analysis on noise
suppression, it is assumed that the high frequency power may be computed bv
multiplying the power of a single jet by a certain number, say, Naff, called
the effective number of tubes, It turns out that in all experimental con-
figurations Neff < Neyora]l» where Nyoral is the total number of tubes in the
suppressor bundle.
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Several empirical expressions for Ngrf have been proposed. One such
expression, adapted by Motsinger(36) but originally due to Eldred, is plotted
in Figure 4-16. This curve applies to "all" the high velocity multitube
suppressor configurations that were studied by Mctsinger. Tt is a very
approximate correlation of existing multitube suppressor data.

Motsinger examined eighteen different suppressor configurations with the
number of tubes varying from 37 to 253 and jet exhaust velocities in the range
of 1800 fps and upwards. Nugg is the ratio of the acoustic power radiated by
the suppressor to that radiated by a single contributing jet. The number of
effective tubes, Ngff, was found to correlate quite well with the ratio of the
inner to the total number of tubes, Ninner/Ntotal. Also Neff was quite
insensitive to the temperature and velocity of the exhaust.

Based on the theoretical calculations for the model problem, a simple
explanation for Neff is now proposed, assuming that the number of tubes in a
given region is proportional to the area of the region. Thus, the quantity
Ninner/Ntotal is interpreted as R = a/b. This assumption is valid only when
the number of tubes in the tube bundle is very large. In this limit, by
superposition, one finds that

outer Ninner
+ n (81)

Ntot:al total total

Neff 1

N
N

N

where n is the '"radiation efficiency" of the inner tubes. Each outer tube is
assumed tc radiate 50% of the power of a single isolated jet. Here Ny,ier
denotes the number of outer tubes, i

The radiation efficiency of the inner tubes may be obtained from Figure
4-15, As an approximation, assume that the jet exhaust velocity is 1800 fps;
the average merged jet velocity is about 1000 fps -- this average velocity
is to be used in the present calculatians because they are based on slug flow
profiles. Thus 10 logjg n is essentially the ordinate in Figure 4-15, M = 0.9
and (Ninner/Ntotal)1l/2 = a/b = R. The acoustic efficiency is to be obtained
at large frequencies (kya - «) by averaging out the oscillations. The two
theoretical points for R = 0.5 and 0.8, calculated from equation (8l) are also
shown in Figure 4-16.

The point to be made is that the high frequency noise reduction for
multitube suppressors does not come from aerodynamic interference (i.e.,
aerodynamic interaction between adjacent jets), since there is little inter-
ference at the exit plane of the jets (especially if the jets are far apart),
where most of the high frequency noise is generated. Rather, the power re-
duction is a consequence of acoustic-mean flow interactions, estimated through
this crude model.
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4.2.2.2 The Directivity of Sound

4.2.2.2.1 Introduction

The results for the power radiated by a convecting mass source surrounded
by an annular jet were derived in the previous section. The purpose of this

section is to sketch briefly how the expressions for the far-field pressure
can be obtained for the same problem.

In jet noise measurements, one is usually interested in the spectra of
the sound pressure level. In order to verify the properties of acoustic
shielding in detail, and experiment was devised (see Section 6) which gave
the dependence of "acoustic shielding" on je% velocity, jet temperature
annular jet thickness, frequency, and angle to the jet axis. The expressions
to be derived in this section provide the same dependence; however, the
actual theory-data comparisons are presented in Section 6.2.

It is emphasized that the solution of this problem, together with the
experimental data, confirms the general effects of acoustic shielding derived
i by Mani(37,38) for circular jets. This confirmation establishes the impor-
tance of acoustic shielding in jet noise.

4.2.2.2.2 Formulation of the Problem

It is assumed that the velocity potential ¢ of the acoustic field obeys
the linear equation

CRPTIC I S I T
ot X X X

(82)
= exp (—iwot) §(x - Uct) §(y) 6(z)

. where U and ¢ are sectionally constant. These denote the mean jet velocity
and acoustic speed, respectively (see Figure 4-12). In this section, the
geometry 1s restricted to that of an annular jet; (y, z) are coordinates in
the transverse plane and the point mass source is convecting along the axis
of the jet system with speed U.. Note that in this part of the analysis the
source convection speed may differ from the jet velocity. The source is oscil-
v lating at circular frequency w, in its own reference frame. As before, A
denotes the Laplacian in the transverse plane. The other variables are de-
fined in the cited figure.

~v

-
- @ .

—

The simplest representation for the acoustic pressure is obtained by
using Fourler transformation in the axial variable x. Defining

1~
. = f e 1% ¢ dx (83a)
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whose inverse is
2 B isx —
¢= T f e ¢ ds (83b)

the transformation (83a) is applied to (82). The results are, after the

introduction of a new dependent variable, ¢,

3/2

¢ = - (2m) ci?exp [it (e, +U_s)] (84a) r
Ad +ké Ki ®= 6(r)/r (84b)

and

A + k% K2 o = 0
o 2 (84c¢)

where ky = wo/cy. Note that s is a Fourier transform variable (essentially
an_axial wave number) and eugation (84b) is valid in the quiescent regions

@ and (@) whereas (84c) is valid in the annular jet, region @ (Figure
4-12). Kj and Ky are defined by

=
N
]

1 (1 + MCO)2 - o2 (85a)

and

-~
N
[}

(C_1)2 [1 +(M_ - M)og]? - o2
2 c, "¢ (85b)

where ¢ = s/ko, M. = Uc/cl and M = U/Cl' The convective and jet acoustic
Mach numbers are denoted by M, and M, respectively. The varlables Kj and
Ko are the radial propagation constants in the quiescent and jet regionms,
respectively.

The Fourier x-transform of the interface conditions is straightforward.

The matching conditions, to be satisfied on the mean location of the two
interfaces, are
1 or 3 o1 2 (86a)
39 3o
(%) =k (33)
9771 or 3 3T, (86b)
80




1 +Mco

K = (86¢)
1 *(MC - Mo

The subscripts 1 and 3 are to be used for the matching at r = a and r = b,
respectively, and refer to the solutions in the quiescent regions. Subscript
2 refers to the solution in the annular jet.

4.2.2.2.3 A Solution of the Problem

As for the elliptic jet [equation (14)], there is a complete correspon-
dence between the equations for the directivity and those for the power pro-
vided that the following equivalence is made [equations (84), (86), and (66),
(68)]:

Correspondence Principle

Power g Directivity
(x{)2 Ki = Kg
(Kz)2 Kg

K K

- c1(2w)3lzu$? )

Thus the solution for the velocity potential is given by the results of
Section 4.2.2.1.4, provided that the above correspondence principle is ob-
served. More exactly,

=T pr oy
® = 7 D' Hi™' (kK1) a7

where D' is given by equations (77b), and (87) is valid in region (:) , and
Ho(l) is the Hankel function. The pressure in the ambient region outside

the jet is proportional to the time derivative of the velocity potential.
Invoking the inverse Fourier transformation, the final result for the pressure
p is

ip e
= - 1 v (1)
P 8-n'ci [ D HO (koKlr) (wo +UC5)
-0
-iwot is (x - U_t) (88)
X e e ¢ ds
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4.2.2,2.4 The Far-Field Directivity of the Source

In the far field, as kR »+ =, where R is the distance between the source
and the observer, (88) can be evaluated by the method of stationary phase.
This procedure is discussed by Carrier, Krook, and Pearson(31), The Hankel
function is expanded in its asymptotic form and then the stationary phase
procedure is applied to obtain the final result for the pressure p:

-iwo(t - R/cl)

w_ 0 89a)
p = - o1 e (D|)0=0* (
4vci R(1 - M_cos0)?
C
where
0. = cos O
* 1 - MC cos0O (89b)

The point of stationary phase is denoted by o4 and O is the angle with
respect to the jet axis. The coefficient D' is to be evaluated at the point
of stationary phase.

4,2.2.2.5 Discussion

It can be observed that the far field decays as R"l as R » », that the
explicit convective amplification of a mass source is two powers of the
Doppler factor (1 - M.cos@), and that the phase difference between the
source and observed signals is the travel time R/cl. The entire effect of
acoustic shielding is contained in the coefficient D'. 1In the absence of
annular jet, D' = -i and p then agrees with the classical result for a con-
vecting source in a quiescent medium. It should be observed from equation
(77) that the coefficient D' depends on the thickness of the shielding jet
(through kpa and kob), the demsity ratio ppp = pz/pl, the convective Mach
number M., jet acoustic Mach number M, and the angle to the jet axis 0.
This dependence will be shown explicitly under the theory-data comparisons
of Section 6.2.

The most significant effect of shielding is at shallow angles to the
jet axis, typically © < 50°. This effect shows ap as a greatly reduced sound
pressure level in the far field. Note that convective amplification increases
the pressure at shallow angles whereas acoustic shielding reduces it. How-
ever, convective amplification 1s frequency independent, whereas acoustic
shielding is strongly frequency dependent. This feature of the model enables
one to predict different directivities at different frequencies. In the
presence of a shielding jet, the total convective amplification of the source
is considerably different from the classical result. This is because propaga-
tion constants K; and K, also depend on M¢ cos O.
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4.2.2.2.6 Conclusions

It has been shown that the power radiated by a convecting mass source
depends on the environment in which the radiation takes place. For the
specific geometry considered, the radiated power varies inversely with iet
Mach number, jet thickness and source frequency. These results are con-
sistent with Mani's(17) findings for a different geometry. The radiated
power of a given mass source is not a constant, and this points to the
nonconservation of the Rayleigh acoustic energy density in sheared flows.
This also holds for higher order singularities such as dipoles and quadru-
poles, since these can be obtained from suitable superposition of simple
sources.

It is believed that the exceptionally good agreement shown in Figure
4-16 is rather fortuitous. A two point theory data comparison is hardly
an adequate basis for drawing substantial conclusions. It can be concluded
though that this preliminary result lends credence to the idea that the
noise power reduction observed at high frequencies in multitube suppressors is
probably caused by acoustic mean flow interaction and is not due to inter-
ference effects.

4.2.3 Conventional Bypass Coaxial Jet Noise

In the previous two sections, the power and directivity of elliptic and
annular jets were examined. The next step in complexity is to introduce an
"inner" or "core" flow in the annular jet. This configuration simulates the
jet plume of conventional bypass engines. The annular and round jet results
will be limiting cases of this section for suitable outer-to-inner jet veloc-
ity ratios.

Two additional steps will be taken in this section. First, the acoustic
field of convecting pressure quadrupoles (rather than simple mass sources)
will be derived, and second, the strength of these quadrupoles will be pre-
dicted by an aerodynamic theory. This leads to a rational scheme for the
prediction of the absolute directivity of coaxial jet noise. A brief sketch
of the aerodynamic mixing calculation is given in Appendix A; a more detailed
description is found in Sections 4.5 and 4.7.

4.2.3.1 Introduction

Considerable progress was made in the early 1970's in understanding the
noise produced by hot and cold round jets. This progress was a direct result
of careful and accurate jet noise measurements and of new theoretical develop-
ments. The theoretical effort focused on the important acoustic/mean flow
interaction phenomenon.

It was desirable to extend this understanding to other nozzle configura-
tions. The primary motivation was to develop a tool to study the parametric
dependence of noise on nozzle shape. Such a tool would be indispensable in
the search for a '"quiet" nozzle. A secondary objective was to check the
generality of the concepts developed for describing round-nozzle jet noise.




In this section, a model of the aeroacoustic characteristics of co-
planar, coaxial nozzles 1s developed. This 1s the simplest extension of the
round jet work. Considerable acoustic data exist for this geometry and com-
parisons of predictions with experiment are presented for a wide range of
inner-to-outer stream velocity ratios and exhaust area ratios. The measured
features of coaxial jet noise are predicted quite well.

: 4.2.3.2 General Remarks

1 The development of the present prediction method rests on two primary

‘ assumptions: (1) the dominant jet noise generation mechanism is the random
i momentum fluctuations of the small-scale turbulent structure in the mixing

F regions of the jet plume; and (2) the propagation of this noise to the far-
field observer is significantly altered by the surrounding jet flow in which
the turbulent eddies are embedded and convecting. The jet produces an in-
trinsic noise intensity spectrum, directly relatable to the statistical

; aerodynamic properties of the jet (i.e., mean velocity and density distribu-
tions, and local turbulent structure properties such as length-scale, in-
tensity), which is modified by acoustic/mean flow interactions.

The prediction method follows a sequence of three basic steps: (1) pre-
diction of the aerodynamic characteristics (mean velocity, density and turbu-
lent structure properties); (2) evaluation of the turbulent mixing noise at
90° to the jet axis utilizing the flow properties from (1) and the Lighthill-
Ribner theory; and (3) construction of the far-field sound spectrum at various
observer positions, utilizing the results of (1, 2) and accounting for the
source convection and acoustic/mean flow interaction using Lilley's equation.

The acoustic aspects of the problem are described in some detail; the

aerodynamic aspects are sketched out in Appendix A. Extensive theory - data
comparisons are also presented.

4.2.3.3 Formulation of Problem

» In this section, expressions for the pressure fields associated with

. convecting quadrupoles are developed. These quadrupoles are assumed to move

) along the axis of the jet; arbitrarily placed sources are discussed in Sec-
tion 4.3.

! It is assumed that the mean velocity and temperature fields in a coaxial
‘ jet (for the purposes of estimating the acoustic radiation) can be approxi-
1i mated by sectionally constant (i.e., plug) profiles. Lilley's equation for
this special situation reduces to [see Mani (37 ]:

+ 3 - 2

- .
. (57' +[[§§J2 P = C Py ~ CzAP

> - - - -3 90
3 _ S(x - U_t) 8(r - r)) (e 6,) . o t (90)
. r
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where p is the acoustic pressure, U, ¢ are the mean jet velocity and acoustic
speeds, U, is the source convection speed, and A is the Laplacian in the trans-
verse variables. The instantaneous location of the source is (Ut, r,, 6,) and
this source is oscillating at circular frequency w, in its own (movigg) ref-
erence frame. The geometry of the problem is shown in Figure 4-17; U and ¢
take on values Uy, Uy, Uz = 0 and ¢y, c2, c3 in the core, fan and ambient
regions, respectively. Coordinates (x, r, 6) comprise a cylindrical system
with x along the jet axis. Also, time is deonted by t. Note that Uj is some
representative average value of inner stream velocity, not necessarily equal

to nozzle exit value; the same remark holds for Uy in the outer stream.

The right hand side of equation (90) is a convecting pressure source.
From the solution for p, the pressure fields for all quadrupoles can be
derived. Then these s: lutions for the quadrupoles are combined in a suitable
way to deduce the solution to Lilley's equation with the actual self-noise
source as the forcing term.

4.2.3.4 Solution of the Problem

The solution to equation (90), satisfying suitable jump conditions across
the fluid interfaces at r = a and r = b, and obeying the Sommerfeld radiation
condition at r = », is obtained by Fourier transforms. Define the multiple
Fourier transform of p as

@ co it
_ 1 i -1 -1
p:z?fjfpelneelgtelsxdedtdx (91)
T “n
whose inverse is
p = 1 z: 5 e in® eth e1SX 40 ds (92)
4m? n= -

and applying the transformation (91) to (90), after a number of integrations
by parts (ignoring contributions from upper and lower limits), the following
equation is obtained:

2= 2 2 §(r - r,) 1iné€
dg+l§l_p_ (Q+Us) Ss2 5 07 o 9%
dr? r 2 T
where F = - 8(a + Ql)/ci ’ Ql = u, ch (94)

Here, @, s and n are the Fourier transform variables. They can be interpreted
as the frequency, axial, and circumferential wave numbers, resprectively.
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The solution of equation (93) is in terms of Bessel functions. The
actual form of the solution (whether one uses regular or modified Bessel
functions) is a strong function of the algebraic sign of

2 _ (@ + 6 s)2 .2
K = Eara (95)

It is required that K2 in the ambient region, Kz, be positive, since
otherwise no wave propragation takes place in the far field. This places
a certain restriction on Q and_s. For these same values of 2 and s, the
values of K2 in regions one (Kz) and two (K%) may be positive or negative.
K2 may be interpreted as a radial propoagation constant in each of the
regions.

Across the interfaces, continuity of pressure and particle displacement
ic enforced. This is because the interface must consist of particles of fixed
identity. If ['f ] denotes the jump in f across an interface, one then re-

quires that
[E] = 0 (96) {
onr = a, b

1 1 dp
[: @ +0 s)? a?_.” = 0 97

where p is the undisturbed fluid density in a given region. Since the undis-
turbed static pressure is assumed to be a constant throughtout the jet, o is
directly calculable in terms of c. Note that, for the coaxial jet problem,
there are two interfaces; one at r = a and another at r = b (b > a). Across
the source location r = r,, P is continuous, and dp/dr changes by F exp

(1 n 6y,

The above jump conditions and the radiation condition at infinity render
tie solution to the problem unique. The required solution involves a tremen-
dous amount of algebra involving very lengthy expressions, which need not be
reproduced here. The final result for the acoustic pressure in the ambient
region 1s given by

_ 1 'iwot
p = - E;;E;— e z: €, €OS n(e - 60)
1 n=0
" i s(x - U_t)
c (1)
X f e [A In(l(lro)Hn (Ksr)]ds (98a)
Q= -Ql
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1
where e, is the Neumann factor (EO = Vi en =1, n > 1)

and A is given by
W(I(1 a) Py K2 9] +Uls
LN BT (K; a) - aTJ' (K, a)
r0K1W(K1r0) P K1 Q +UZS n 1 n 1 (98b)

2 -1

The parameters o and B in the above expressions for A are given by

W(K, a, K, b)
(D 2 3 B2

2
K. (a + UZS) L(KZ b, Kz a)

P2 %3 (n! (98¢c)
+ £ = H (K= b)

03 K, Y n 3 WX, bJ

. L'(K, a, K, b)
_oo(ly A
B = M ™" (K3 b)) —wrg)

0, Ky (@ +Uzs)2 (1) C b W(kK, b, K, a)

* GT\.—Z— 02 ”n ( 3 ) W(K2 b) (98d)

The auxiliary functions occurring in equation (98) are defined as follows:

W(z, ¢) = T (2) Y' () - T (2) Y, (2) (99a)
L(z, z) =7 (2) Y (&) - 7 (g) Y (2) (99b)
L'(z, ¢) = 71(2z) Yp(z) - T () Y (2) (99¢)
W(z) = W(z, 2) (994)

where J, and Y, are Bessel functions, and the primes denote differentiations.
W(z) is, of course, the Jacobian, and Hn(l) is the Hankel function of the
first kind [Abramowitz and Stegun(y‘)].




The above solution for the gtessure in the ambient field is valid as long

as (K%, K%, and K3) > 0. When Ky is negative, equations (98) and (99) are
still valid provided that all the Bessel functions whose argument involves Kj
are replaced by their modified counterparts. Similar remarks hold for K%.
The solution given by p represents the acoustic pressure for a simple source
convecting with velocity U., having a source strength of unity and frequency
wo. The source is at an arbitrary o}nt in the core region (region (:) ) of
the jet, r = ro. Note that K = |K2|1/2,

It is seen that the expression for the pressure of a convecting source
is a superposition of certain cylindrical (i.e., the sum over n) and axial
(i.e., the integral over s) waves. The weighting factor, A, being an ex-
tremely complex function of the geometry (a, b), source convection velocity
Us, jet core and fan velocities Uy, Uy, jet temperature and source frequency,
is evaluated numerically.

4.2.3.5 The Far Field of Quadrupoles

In principle, it is possible to evaluate the integral in equation (98a)
numerically and then differentiate the resultant expression with respect to
the source coordinates (ry,, 6p) in order to generate the dipole and quadrupole
solutions to Lilley's equation. On the other hand, whenever the observation
point is in the far field, it is possible to evaluate this s integral by the
method of stationary phase. The technique is classical and ;Berefore only
the final result need be quoted. In the limit as (r2 + xz)l + =, equation
(98a) can be reduced to the following:

p = Z B cosn (6 -8 T (Kr,) (100a)
Nn=(
where
-iw _(t - R/cy)
1 € o] 3 .
Bp = —F- 2 A e inm/2 (100b)
Ty R(1 - MC c0s0)

and R is the distance from the jet nozzle to the observer located at angle O
with respect to the x-axis, and M, is the source convection Mach number
U./c3. Also, A is to be evaluated at the point of stationary phase, given by

k cos0

S = Xo 1= Mccoso (100c)

where kg = wg/c3. Equations (100) contain the results of Lighthill for the
limiting condition c; = ¢2 = ¢3, Uy = U = 0, as well as the round jet results
of Mani for a = b, Thus (100) is a generalization of all previous acoustic
theories.
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Thus far, the location of the source, rp, has remained arbitrary. Phys-
ically, the most appropriate location for the source is along the nozzle lip
line (i.e., at rg = a and ro = b). However, in the case of a slug flow model
of a round jet, Mani (37,38) (see Section 4.2.2) has found that the precise
location of the source is not too important, and that sources convecting on
the jet centerline sufficiently explain most of the characteristics of both
hot and cold round jet noise. Thus, in this analysis, rg = 0 is assumed.

Equation (100) is now expanded in a Taylor series about rg = 0, yielding
the result

= C o e : 2 _ .2
p (‘O +y0C1 cos@ + 200 sing + (yo zO)CZ cos2®6

5 . . v 1 2 2 29y 3
Y2¥g 29 by osin 2€ - [KT| (yg *zflcy + 0(x)) (101a)

where /2
21N/ <
) Banll

n Jn

C

r(n +1) (101b)

and (yp, zo) denote the transverse coordinates of the source. T(n) is the
Gamma function.

The transverse dipole and quadrupole solutions can be obtained from equa-
tion (10la) by differentiation with respect to Yo and 2z, and then setting
rg = 0. Also, differentiations with respect to x generate longitudinal dipole
and quadrupole solutions. This latter operation is equivalent to multiplica-
tion by s given by equation (100c); symbolically, 3/3x + s.

As an example, consider the on-axis y-y quadrupole Qo2 = ny. The solution
in terms of the simple source solution is given by

= = 3’p - . . 1y
gz = Qy = | ] 2 ¢, cos 26 - zlKi|C)

3y} -
N rO—O

(102)

The square of the amplitude of this quadrupole 1s given by

0,512 =0 0*
~22 TN 22 N22

where Q* is the complex conjugate of Q. If we define, for any quadrupole

(i’ j)’
2t 2m

1 2 (103)
i] ; f f Q351 dedg
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we find that

=C_Cc* .1 *
3z, 2% 5K GG (104)

Physically, aj, is the aximuthal average of the amplitude of a ring of totally
incoherent y-y quadrupoles. 1

The expression for acoustic pressure (10la) is valid for a "unit" convect-~
ing (and compact) velocity fluctuation. Both in the Lilley and Lighthill ?
formulations, the strength of the noise source is proportional tco the jet
density. Mani 3 has shown that a compact velocity quadrupole in a heated
jet generates dipole-like and simple source-like forcing functions. A
detailed derivation of these terms is omitted herein for brevity, but the
final expressions are quoted below:

1,4 2 cos“o *
= k C
11 77X P Ty coseye 0 o (105a)
C
1 ,, cos?0 dp,? * 2 *
a., = 5 k [(3=) ChCh +0°CiCy 1 (105b)
1277 % 7 M. cose)? dr 0%o 141
_ 3 3%p 2 1 30 2 * 1 ,3p,2 %
a5, = 15 [ .r ) ¢ - (57071 €oCy *+7 (59 €€
\ 1 . (105¢)
o7 G0, + 5 Ky CpCq ]
21 9%p,2 1 3p, 2 *
a3 = T¢ [(_a )t GG 1 ¢
T T F
2 " ) x (105d)

In these equations, (p, 3p/3r, azp/ar2) are some representative values of
the density and its various gradients. The exact cg?putation of these
gradients follows the procedures proposed by Mani(38), Note that when p=1
equation (105¢c) reduces to (104) as required.

Finally, these various quadrupole solutions are combined so that the
nolse source is effectively an eddy of isotropic turbulence, as suggested
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by Ribner(39). In the present terminology, the approximate mean square
pressure is given by

2
P~ (ayy +4a), v 235, 1 20,4) (106)

The factor of proportionality in this equation is directly relatable to the
turbulence properties in the jet supplied by the aerodynamic calculation.

If p2 is known at one angle (say O = 90°), this factor can be found and equa-
tion (106) can be used to find the mean square pressure at all other angles.
Thus, the absolute level and directivity in each frequency band can be esti-
mated.

4.2.3.6 Discussion of Results

In applying the previously described model to coaxial jet noise predictions,
three further assumptions had to be made. The first assumption concerns the
selection of a diameter of characteristic length D to use in determining the
typical frequency of each jet slice. A suitable expression for D which
satisfies the limiting conditions when Uy = 0 or Uy = Uy is

Yy Ua.
% = "U—J— a + "T']— (b - a) (107)
max max

an assumption was also made that the "suitable average" values of U and U,
used in evaluation of the directivity expressions of the previous section are
given by 65% of the corresponding nozzle exit values. Further, the source
convection velocity was assumed to be 657 of U; evaluat:id at the nozzle exit.

Figure 4-18 shows overall sound pressure level (OASPL) variations with
velocity ratio VR and area ratio AR, at an observer angle 0 = 90°. These
predictions essentially come from the aerodynamic portion of the prediction
model and the Lighthill-Ribner theory of jet noise. The data (denoted by
symbols) shown is from Olsen(ao), and the theory is indicated by a solid line.
There is remarkably good agreement at all area and velocity ratios. In par-
ticular, both the location and the magnitude of the noise minimum is pre-
dicted correctly. This noise minimum is a direct consequence of the reduc-
tion in turbulence intensity in the inner-to-outer stream mixing layer as the
outer flow velocity is increased to about 40% of the inner flow velocity. *
Further increases in outer flow velocity cause the outer-to-ambient stream
mixing layer turbulence to produce the dominant noise. Figures 4-19 and 4-20
show corresonding SPL (sound pressure level) spectra at two area ratios and
several velocity ratios. The agreement attained between theory and experi-
ment was found to be quite good. The data are free field and lossless for
pure mixing noise.

*
For the precise relationship between the turbulent mixing parameter and
velocity ratio, see equation (280).
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Figure 4-18. Overall Sound Pressure Level at O = 90°
as Function of Area and Velocity Ratios
(Cold Jet, Ulj = 980 ft/sec).
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Figure 4-19. Sound Pressure Lev :1 at 0 = 90° as Function of Velocity
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Figure 4-20. Sound Pressure Level at © = Y0¥ as Function of Velocity
Ratio (AR = 9.3, Cold Jet, U, , = 980 ft/sec).
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Figures 4-21 through 4-23 show the SPL as a function of observer angle 0O,
at constant values of source Strouhal number St = f a(l - M. cos0) /U ;.
These results, for AR = 3.9, are shown at velocity ratios of 0.4, 0.6, and
0.8, respectively. It may be recalled that the SPL at O = 90° comes from the
turbulence prediction and the Lighthill-Ribner theory. The acoustic theory,
equations (100) - (106) extends the 90° prediction to all other angles. It
is seen that the agreement between theory and experiments is good except at
high frequencies and shallow angles, where refraction is generally overesti-
mated. This is a limitation of the slug flow assumption, as Mani 37) also
obtained similar results for round jets.

Figure 4-24 shows SPL versus VR trends at several angles and Strouhal
numbers. Again, the acoustic theory is quite successful in predicting the
directivity pattern, while the basic turbulence/intrinsic intensity models
yield the correct absolute levels.

Finally, in Figure 4-25, the SPL spectra for a heated coaxial jet are
shown at several velocity ratios. Again the agreement between theory and
data [from Kazin, et al.(“l)] is seen to be very gond.

4.2.3.7 Conclusions

In summary, it appears that the present model is capable of predicting
many of the observed characteristics, including absolute level, of coaxial
jet noise. The noise reduction of coaxial jets, for VR < 1, was found to be
primarily a result of reduction in turbulence intensity. A number of improve-
ments in the theory will be described in the following sections. These
include a better description of the turbulence spectrum (i.e., the slice-of-
jet approach is replaced by a local eddy-volume discretization of the jet
plume), and the slug flow is replaced by continuous sheared velocity and
temperature profiles.
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4.3 GENERALIZED HIGH FREQUENCY SHIELDING THEORY

The purpose of this section is to derive expressions for the pressure
field of various high frequency convected singularities immersed in parallel
jet-like sheared flows. These expressions include the simultaneous effects
of fluid and source convection, refraction, and jet temperature. There is no
restriction on the location of these singularities; they can be anywhere
within the jet but the convection velocity is assumed to be parallel to the
jet axis.

The theoretical results show the explicit form of the fluid shielding
integral. This quantity depends rather strongly on the precise location of
the source; the closer the source is to the jet boundary, the less is the
effect of acoustic-mean flow interaction.. It is also shown that convective
amplification for the pressure of a quadrupole is increased by a factor of
(1 - Mj cosO)‘1 over the classical results, where Mj is the jet Mach number
and O is the angle from the jet axis. Thus acoustic mean flow interaction
not only implies "refraction'" but also additional convective amplification
due, not to source convection, but to fluid motion. Interesting effects due
to temperature are also evident.

Finally, the results of this section form the backbone of the acoustic
portion of the unified aeroacoustic model described in Section 4.7.

4.3.1 Introduction

Lighthill(éz), in his classic theory of jet noisc, identified the most
prominent source of noise as the double divergence of the tensor uu where u
is the fluid velocitv. He also showed that the acoustic pressure fluctua-
tions that are driven by this source obey the classical wave equation. Since
the source of noise is embedded in the jet, the pressure fluctuations propa-
gate through a recion of nonuniform velocity (and perhaps temperature) before
they reach the ol ,erver. The Lighthill theory clearly fails to account for
this physical effect, that is, it does not take acoustic mean flow inter-
actions into account explicitly,

Recently it has been recognized, especially through the work of
Mani(17, 43, 37, 38), that these acoustic mean flow interactions are ex-
tremely important and explain quantitatively many of the observed character-
istics of cold and hot jet noise., Perhaps the most significant finding of
Mani is that '"convection amplification" is frequencv dependent, where, in the
definition of convection amplification both source and fluid convection
effects (i.e., a nonzero jet velocity) are now included. Several other
authors, notably Ribner(7), Csanady(14), Schubert(44) and Pao(45) have
qualitatively explained a number of phenomena by acoustic mean flow inter-
actions.
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Three points in connection with Mani's work are to be made. First, he
treats round jets exclusively; second, for the purposes of estimating the
acoustic field, he replaces the actual jet velocity and temperature profiles
by uniform or slug flow profiles; and third, he assumes that the quadrupole
noise sources are convecting along the centerline of the jet.

Various generalizations to Mani's work have been made. The slug flow
theory was successfully extended by Gliebe and Balsa(46) to coaxial jets, the
slug flow profiles were replaced by monotonic and continuously varying pro-
files for on-axis sources by Balsa(47) and Goldstein(48), and results for
arbitrarily located sources in continuously varying monotonic profiles were
derived by Balsa(49) and Goldstein(50, 51)

It should be noted that the slug flow theories become quite inadequate
at high jet velocities (v 2000 fps) and at "small" angles to the jet axis
(v < 50°). This is especially true for nonmonotonic velocity or temperature
profiles. These are encountered in inverted-flow nozzle exhaust systems. An
indication for the systematic failure of the slug flow theories may be seen
from the work of Mani(37, 38) or Gliebe and Balsa(46); although the theory
data comparisons in these references are restricted to jet velocities of less
than 1000 fps.

In any case, it is now known that a satisfactory (i.e., rational and
accurate) theory of jet noise can be developed based, to a large extent, on
the radiation field of quadrupoles immersed in parallel sheared flows. For
the purposes of the acoustic theory, the locations of these quadrupoles are
arbitrary -- clearly these locations must be determined by independent means
such as an aerodynamic mixing calculation. It is also sufficient, especially
at high jet velocities, to consider only the high frequency radiation from
these sources. Tester and Morfey(Sz) numerically find the high frequency

asymptote is attained very rapidly. Similar sentiments were expressed by
Pao(45),

The starting point for the present theory is Lilley's equation in which
the jet velocity and temperature profiles are arbitrary functions of the
radial variable r. The relevance of Lilley's equation to jet noise has been
questioned by a number of authors for various mathematical and physical
reasons. It is felt that if acoustic mean flow interactions are important,
as they really are, the Lilley equation must be a first approximation of
these effects. This conjecture is supported by the success of the work of
Mani. The approach is to solve Lilley's equation for a convected point
source of circular frequency w, This solution is a Green's function. The
approximate solution that is presented is valid to lowest order as ka »+ «

(k = w/co) where a 1s the jet radius and c, is the ambient speed of sound.
It is next shown how to obtain the corresponding results for quadrupole
singularities and how to combine these to describe the radiation pattern
from convecting isotropic turbulence.
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Thus the present work is similar to the high frequency work of Pao(as).
There are a number of important differences, however, some of which are: the
current use of Lilley's rather than Phillips'(13) equation and the current
treatment of a cylindrical rather than a planar shear layer. The present
work is also quite closely related to the high frequency result of
Goldstein(51); however it is felt that the current results are much simpler,
more explicit, and more general.

4,3.2 Formulation of the Problem

It is assumed that physical space is spanned by a stationary cylindrical
coordinate system (r, 8, x') where x' is along the jet axis, as shown in
Figure 4-26. Lilley's equation is given by

. oo
L{ps Uy x*) = 5 Df p - D, ap - -dgr— (Tog ¢?)p), —35-

O

du  3°p _ _ (108a)
*2 G o TP 0y VYt - TET
du 3 .
'zpdrax'v (UP! u')
with
d 3
D, = ==+ U=
U at oX (108b)
and
a2 S I
AT YT Py ar Tort aeT
(108c)

where t denotes time, p is the acoustic pressure, c = c(r) is the undisturbed
speed of sound, U = U(r) is the mean or time average jet velocity and p = p(r)
is the mean jet density. The turbulent velocity fluctuations are given by u'

and the overbar denotes an appropriate average (up is the radial component).
The solutien to equation (108a) can be written down formally as t + « provided
that the solution to
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it §(x' - Uct)d(r - ro)d(e - 60)

L(g; u, x')=e (109a)

r

is known. In equation (109a), { = /-1, w, U, > 0, T, and 8, are given con-
stants (i.e., independent t, r, 6 and x'). Equation (109a) simply defines a
Green's function. Actually, using the Galilean transformation x = x' - Uct,
it is possible to rewrite (10%9a) as

S(x)s(r - ro)d(e - eo)
— S o

(109b)

L(g; V, x) = o lut

where

V=U-1U
c (109¢c)

Thus the canonical problem to be solved is equation (109c¢) with suitable
radiation condition as ¥rZ + x2 > ». The solution to equations (109a and b)
represents the pressure field of a convected monopole source, This pressure
field obeys Lilley's equation.

After using the sequence of Fourier transformations (110a), one finds
that equation (109b) reduces to (110b) where

jwt ? i
-~ -3 6
g =& Je‘s"dxje"‘ g de
en L n (110a)

and

(110b)

ineo s(r - ro)
L e
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with N = V/ce, k = w/cy, and c, is the ambient speed of sound. Note that the
inverse Fourier transformation of (110a) is given by

-iwt ® . e .
e - ine Je1sx 7 ds (111
2u/2m n= - 5

The coefficient of da/dr in (110b) can be eliminated by a standard
transformation. Defining

1
P=vr T

£ ' 7 112
cm—k ng (112a)

(110b) then reduces to

21-N62_2_n2-1/4
Prr+ k[ST_TLc/cw‘ o] =z P

']
17, 7,001y (112b)

1 ind, §(r - ro)

i ¢ 1
=S T T LT - )2 e -

where ¢ = s/k and

Yy = ~C/C (112¢)
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For small values of r, the term (nZ - 1/4) r~2 dominates the left hand
side, (note that r-1 y,/y has a removable singularity at r = 0) whereas, for
kr >> 1 the term k2[...... ] dominates since terms involving ¢ are of order
(a=2) by hypothesis, and ka >> 1. Thus the terms involving ¢ con be neglected
for all values of r as long as ka >> 1; therefore, (112b) simplifies to

. 2 4 n? s
Irr + k {j T 0) - —;‘T jp (1133)
i ) 1 ine_ &(r - ro)
= *“;'Ez k7 (17=No)? e vﬁ;_—_
where k = w/c_, 0 = s/k, N= (U - UC)/C°°
i]. - NO)? 2

and

(113b)

The qualitative behavior of P depends on the algebraic sign of g2 -- P
is "oscillatory" for g2 > 0 and "exponential" for g2 < 0. The turning points
of gz, that is, the values of r for which g = 0, are next examined.

4.3.3 The Turning Points

The quantity g2 is called the shielding function®. For given velocity
and temperature profiles it is a function of the axial wave number ¢ = s/k
(s is the x~Fourier transform variable). It is possible to show, by using
the method of stationary phase for evaluating the s-integral in equation (111)
that, at each point in the far field, the pressure depends only on one value
o, for example oy, where

_ cos 0
9% = 1 - M_ cospo (114)

The far-field observation point makes an angle O with respect to the jet

axis and M. = U./ce is the convective Mach number. Physically, equation
(114) means that most of the sound that is observed at a point (R, ©) in the
far field travels along the line segment joining the emission and observation
points. This line segment has length R and makes the angle 0 with the jet
axis. Thus (R, () are really retarded coordinates [Morse and Ingard(25)];

* When g2 is positive, it may be interpreted as a local "propagation
constant',
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in jet noise they are generally interpreted as the distance from the jet and
the angle with respect to jet axis [Lighthill(Az)].

It is also convenient to introduce an alternate shieldingt function

2
G> = g? - V—z ; v=n/k (115)

Lo ]

so that G2 is essentially the curly bracket in equation (113a) provided that
k » » for (n/kr) fixed. Both G2 and g2 will be used in the analysis.

It turns out that when the acoustic Mach number* N = V/cw = (U - Uc)/cCo
exceeds unity or when the jet velocity or temperature profiles are nonmono-
tonic, the shielding function, gz, may have none, one, or two turning points
or zeros, depending on the value of the angle to the jet axis. These possi-
bilities are illustrated schematically in Figure 4-27; the zeros or turning
points are denoted by r;. For certain mean profiles, one could encounter
more than two turning points, however, for technologically relevant exhaust
profiles, no more than two have ever been found.

The illustratiomns in Figure 4-27 show all the turning points as simple
zeros. Clearly somewhere between 0 = 90° and 70°, a situation exists in
which the shielding function is nonnegative and has a double zero. Similar
pathological cases may exist for other values of the angle 0. Also, the
axis r = 0 is a particularly rich source of mathematically interesting alter-
natives. These rather specific situations are not treated here; they are
briefly discussed by Balsa(49),

It is assumed that the turning points are simple and well separated.
This means that the distance between the axis and a turning point or the
distance between two consecutive turning points is at least one wavelength.
In the strict asymptotic sense, as the frequency w + «, one should have no
difficulty in meeting these criteria, except perhaps in certain narrow regions
of width of order (w~1) » 0.

As pointed out above, the radial location of the source, ry, is arbi-
trary. The specific form of the solution depends on the relationship between
the turning points and the radial coordinate of the source. There are six
equivalence classes of problems; these are designated as (D , ®... in
Figure 4-27. The dashed vertical lines indicate the possible locations of
the source. As long as ry < rg, the solution will be qualitatively and
physically similar to that of Problem GD. Similar remarks apply to the
other situations. In the following, detailed solutions will be given for
each of these possible alternatives.

®
For subsonic (N < 1) round jets one encounters at most one turning point.

t+ See footnote on page 104,
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4.3.4 No Turning Points - Problem (D)

The treatment of the case for which g2 has no turning points 1s the
easiest because algebraic details are at a minimum and the solution resem-
bles quite closely that of the classical wave equation.

The key point is to observe that E?e homogeneous version of equation
)

(113a) has solutions of the form (£/g)1/2 ¢, (kf) where C, is any Bessel
function of order n and

r
£ = f gdr (116)
0

Thus one writes, on either side of the source,

B/ %0 k) rer
P =

(117)
A ED ko 1o or

where J, is the Bessel function of first kind and Hn(l) is the Hankel func-
‘ tion, so that P satisfies the finiteness and radiation conditions at r = 0, «
. respectively, as required.

The constants A, B are determined by imposing that P i§ continuous across
the source location, r,, and that dP/dr jumps by an amount € where

in®
' i % o1 1 Mo
“ " far. o K (1-No) © 118
‘: ™ -
) r0 coo (o]
!
{ The last result can be obtained by integrating equation (113) across a narrow
region that includes the point r = r,. The subscript "o" denotes the value
; of a quantity evaluated at the location of the source; c, = c(rp), etc.
\1
Vi Solving for these constants and substituting them into equation (117),
. one finds for r > rg
)
/

.
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1/2 1/2
0

It should be emphasized that all of these results are valid only at high
frequencies (k = w/c, > ®). At lower frequencies, additional terms are pres-
ent; here, these are discarded because they are asymptotically small.

From here on, the calculation of the Green's function is extremely

simple. First g is abtained from equation (112) and then g is obtained from
equation (111). An intermediate result is

[o2]

e [t Coy fo V2 V2 1-Ne
3 8me c 8,70 gr (1-N 0)2
g ]
(120)
© in(eo'e) (1)
X e Hn (k &) Jn (kgo)
n=-«°

The above infinite sum is evaluated by the addition theorems for Bessel
functions [Magnus(53)] and the o - integral is evaluated by the method of

stationary phase [Carrier(31)]. The final result is, as the observation
point recedes to infinity,

. c /e, g 172
i 0 (=2 )

g =
4ncoo kR (1 - Mocoso)2 Tofo

iw(R/c_ -t (121)

) o0
X e exp {ik[] (g -gm)dr - Eocos (e- eo)]}
)

where cw is the speed of sound at infinity, k = w/c, and geo is the value of
g at infinity. Note that My = U(ry)/ce is the jet Mach number at the location

of the source. It should be noted that functions of the axial wave number,
o, are to be evaluated at




ol - i - e

\
y

cos 0

Q
i

o — Vs
* 1 - MC cos0 (122)
where ox is the point of stationary phase. In particular,
(g—)'2 (1 - M cos O)2 - cos%o
g2 . (123a)
(1 - Mc cosO)2
where M = U(r)/ce, ¢ = c(r), M¢c = Uc./ce and
r
(0]
£y = j gdr (123b)
(o]

Note that the far-field Green's function decays inversely with distance
R; it has a convective amplification factor of (1 - M, coso)'2 where M_ is
proportional to the jet velocity (not to the source convective velocity); it
depends explicity on the square root of the absolute temperature at the
source ¢y - /T; , and it depends implicity on jet temperature and velocity
through functions g4 and £,.

The phase delay R/co represents the travel time from the origin of the
convecting coordinate system to the observation point, and the additional
phase terms in equation (121) represent a correction to account for the fact
that the signal comes from point x = 0, r = ry and 8 = 6, and not from the
origin (x = r = 0). To see this, consider the Lighthill theory (M = 0,
c/ce = 1), so that, from equation (123a)

_ 8in0 (124a)
€ =g = l-MccosGJ

and
L .Eo
£ o008 (v-8) = gy M_ cos0) (124b)
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where [ - Lo are the transverse coordinates of the observation point and the
source respectively. 1In this special case, the actual time delay is [R -

g - EQ/R (1 - Mg cos()|/cs; a classical result that is well known. In the
presence of mean flow, the time delay is somewhat different from the classi-
cal results. This is because the signal propagates along curved rays rather
than straight lines between the source and the observer.

The final expression for the Green's function (121) is certainly ex-
tremely simple. An alternate expression, although more complex, will now be

derived because the approach developed below will be needed later on; it is
also the method used by Goldstein(51).

The key observation is that the governing radial equation for P

P+ KGR = 5 =g - (n/kn) (125)

can also be solved by the WKBJ technique [Carrier(Bl)]. When g2 is positive
for all values of r, G2 may be positive or negative, depending on the magni-
tude of the "circumferential harmonic" n/kr = v/r. It is well known that, at
high frequencies, the most important contribution to P comes from those values
of (v/r) for which the shielding function J2 is positive at the source (i.e.,
Gy > 0); this contribution is

~

v -in/4 n ; (126a)
P = —mm— e cos(kxo-z)exp(xkx)
ik VGCO
where
r
X = Jf Gdr
r (126b)
ov
and rgy - r, is the unique zero of 2. Note that the subscript "o" again
represents the value of a function at the location of the source (e.g.,
rO
Ao © J G d r) and ¢ is given by equation (118).
av
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After substituting equation (126) into (112a) and (111) one obtaines, as

T > o,
-jwt iokx o 1- Nmo do
g = -
4n°c k . 1-No)° A£T
. e in(6_ -9
g iT/4 € 2 cos (kx, - 1)
/Gy 0 (127)
Nn=-c oo
xexp[ikj(G-g)dr +ikg (r-r )] ,f
ov :
where N_ = - M, is the value of N at infinity. In the far field as

k (x2 + r2)1/2 + » equation (127) becomes, by the method of stationary
phase,

. - i VA o 1(R/c_-1) l(__2_7r_)1/2
4chmkR (1 _ Mo coso) 2 m kro (128)
°° m (e £
e ‘o m . .
X Z = cos (kx0 - 4) exp [1k f (G - gw) dr - mgmrdv]

n=-« 0
av

A comparison of equation (128) and (121) provides the value of the
series in (128); this value will be needed in the following analysis.
Actually, it is possible to evaluate the sum directly by replacing it by an
integral and then evaluating the latter by the method of stationary phase.
The anlaysis is quite simple and explicit for g2 = constant = gm, where it
is found that




# i
3

1/2
k o .
§ P4 ) - 6- €
5 (=) exp [ ik g r_ cos ( 0)] (1292)

as k » ©, The major contribution to the sum comes from the vicinity of
v =n/k = gr_sin(e_ -9 (129b)
w O (0]

The solution given by Goldstein(51) is in the form of an infinite series
(128); but the series can also be evaluated to obtain the simple closed form
result given by equation (121). Equation (126a) is related to the Debye
expansion of Bessel functions [Abramowitz and Stegun(34)].

4.3.5 One Turning Point — Problem (2

Consider next the problem in which the shielding function, g2, has a
unique turning point at r = ry so that ry; > ry. The solution for P can again
be written down as linear combinations of Bessel functions for r < rg. The
only point to note is that now the appropriate solutions of the homogeneous
version of equation (113a) are modified Bessel functions I, (k&) and Kj (k&) ,
where

r
g =f fdr P, (130)
o
and g2 = -f2. Thus f2 is positive whenever g2 is negative.

For definiteness, it is required that P have the form

ACe/DY? 1 ko) r<r (131a)
P - " °
(/02 [BL ko) + CK (kE)] r <r<r
n n Y g (131b)
so that P is finite on the axis. Across the source location, r,, the con-

tinuity of P and the jump in dP/dr determine two of the three constants, A,

B, and C. The modified Bessel functions in equation (131b) are then expanded
in their Hankel asymptotic forms (k £ » «, n fixed) to obtain real exponential
functions of positive and negative arguments.
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These exponentials are matched to trigonometric functions (i.e., to ex-
ponentials of imaginary argument) across the turning point by use of the
classical WKBJ turning point conditions [Carrier(3l)]. For r > ry4, only out-
going waves can be present; this additional constraint determines coefficients
A, B, and C uniquely.

The solution for the transform of the Green's function is, as kf, »+ =,

-~ 0
P=grt (7)) (5 (132)
)
1/2 -k ¢
2 . 7 o
x(wk 3 ) expx(ké* - Z) e In (k&o)
*
where r r
50 =.j’ °fd r, £ = Jr gdr
*
(o} r
c

and € again given by equation (118). The mathematical resemblance between
equations (132) and (119) is very close, especially if the Hankel function in
the latter is expanded for large values of its argument. In fact, equation
(132) could have been obtained from equation (119) by a suitable analytic
continuation.

Nevertheless there are important physical differences. The phase factor
in equation (119) (apart from some unimportant constants) is essentially

r ry r
E:f gdr:f gdr+f gdr (1333)
o

o r
c

On the other hand, the phase of equation (132) is essentially
r

£ =j'gdr
*
r

g

(133b)
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and it appears that the first contribution to the integral in equation (133a)

o
has been converted into the real exponential exp (-kEo) = exp (~k j fdr).

o
This point will be discussed further in the following paragraphs.

The Fourier inversion of P can be explicitly carried out by the method of
stationary phase and the resultant infinite series in the circumferential
harmonics can be evaluated by another addition theorem for Bessel functions.
The final result for the Green's function is

. c /c 1/
s = 3 1 o/m (go)’2 (134)
Trcm kR (1 - MocosO)2 To fo
ion(R/c -1 > -k[ &~ € cos(6-6)]
X e o exp[:ik J (g - gm)dr - ikgmrJe ° °
. r 4
c

where the above is to be evaluated at o = o, equation (122).

After comparing the expressions corresponding to the two cases treated
so far (i.e., zero and one turning pcint) one sees that, when a turning
point is present and the source lies in the negative region of the shielding
function, the ratio of the amplitudes of the two Green's functions (i.e., the
ratio of the far-field pressures generated by convecting point sources) is
proportional to

exp {-k[ b = b, cos (- @0)]}

The geometric interpretation of the argument of the above exponential easily
r

) tollows in (£, 8) space (& = J f dr).
) o)

Figure 4-~28 shows that the exponential damping (or "attenuation') of the
signal is proportional to kd = w d/c,, where d is some effective distance of
; fluid surrounding the source. Thus, the deeper the source is embedded in the
iy jet and the higher is its frequency, the smaller will be its pressure ampli-

tude in the tar field. Roughly speaking, this dimunition of the far-field

acoustic pressure is a direct consequence of acoustic shielding. It is also
( observed that shielding depends on jet velocity, temperature, and observer
angle C through the function f,
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cos?o - (1-M cos())2 (c/c )-2

(1 - Mc cos (-))2

It is also worthwhile to obtain a representation of the solution by the
WKBJ technique directly applied to equation (113a). The function 62 has a
unique zero at r = rg, where rgy, > ry. At the location of the source r = 1o,
G2 = Gg is, of course, negative. Writing F2 = - G2 for negative values of
G2, one obtains following Goldstein(51)

r

a -in/4 ov
P=—"—ce¢ exp (—kj F dr) (135a)
2 ikVGF
0 r
x exp (ikx)
where
r
X = f G dr
r (135b)
ov
The Green's function in the far field reduces to
i co/coo iw(R/c_ - t) 1 9 1/2
g = - e = (==
47 cmkR (1 - M0 cosO)2 2m l{ro
o in(fo  -9)
e O Ib'\)
XZ — exp(-kf F dr)
VEF (136)
n=-o o) r
o)
xexp[ik I(G-g )y dr - ikg r
© © gv
r
ov

116




- C .-t~

e~

P

The last result can be obtained from equation (128) by comparing (135a) and
(126a). Again functions of o in equation (136) are to be evaluated at the
point of stationary phase.

Consider next the evaluation of the infinite sum in (136). It would
first appear that most of the contribution to the sum comes from small values
of (n/kr), so that, with the exception of the exp [in (6, - 6)] term, it is
possible to set n to zero. This is because the larger and larger circum-
ferential harmonics are attenuated more and more severely by the real exponen-
tial factor whose argument is proportional to the (large) frequency. This
analysis says that

rO'
g ~ exp(-k f fdr) 6 (6 - eo)

r
o

so that all the radiation takes place in the 6 = 6, direction; the "amplitude
in that direction is reduced by a certain integral of the shielding function
£f2 = -gz. While this result is inadequate for the radiation from a point
source because all the energy is channeled into a very narrow region about
the point 8 = 8, (hence the amplitude becomes infinite), it is rcasonably
adequate for a ring source in a jet. This is obtained by integrating the
Green's function; from equation (136) one finds

T % oy 1/2

fgd 8~ exp(-k f tdn) () (137a)
- (o 3N 0]

™ ro

whereas from equation (134)

T
0 ( £, )1/2 k£,
gd® ~ e II (k¢ Y ase
:[ 0 rofo o o 0
™ -~
1
2m 1/2 ro (137
~ (W) exp ( - j’ f dr)
oo
TS
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as kf  + @. The factors of proportionality in equation (137) are identical.
Note that the last result is obtained by noting that exp [kf, cos (8 - 65)]
is the generating function of the modified Bessel function I,. Thus the
crude summation proposed above gives the correct result for a ring source;
alternatively, it gives the correct value for the circumferentially averaged
radiation field. A comparison of equation (136) and (134) also shows the
more exact value of the infinite series in question.

4.3.6 Two Turning Points -- Problem (3

(2) Consider ngw _the case in which theve are two turning points at r{1) and
r, ', so that rj < réz) and rol) > ry. In this situation, there are four L
distinct regions in which the solution for P must be considered. On either

side of the source one has expressions similar to equation (131) except that
the modified Bessel functions I, and K, are replaced by J, and Y,, respec-
tively, and f is replaced by g in the definition of £. Across the source
location, r,, the usual two conditions are imposed; two applications of the
WKBJ turning point conditions and the Sommerfeld radiation condition render
the solution unique.

The s or o integral is again evaluated by the method of stationary phase,
and the infinite sum is obtained from a suitable addition theorem for Bessel
functions. The details follow the ideas developed in the previous section;
the final result for the far-field Green's function is

i co/cm £ 1/2

g = (
4rc_ kR (1 - M cos?) Tofo

e 0]

iwR/c -t) ke 102 (5
e ® exp [:ik f (g -g,) dr -ik g r(z)]e ¢ (1382)

@) ’

J

b

r

a

x sin[ kg cos(1-0)+kE (1) ]/sin (2k 5(51))

where

3 =j ’
0 g dr (138b)
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o} (1384d)

Several observations are in order. First the reduction in thg)amplitude
of the far-field Green's function is proportional to exp [-kEo(l’ ] where
50(1’ 2) is the integral of the square root of the negative of the shielding
function between the two turning points. Because of this, the far-field
pressure is relatively insensitive to the location of the source; similar
results were found for a slug flow annular jet when the source was placed
in the zero velocity region in the center of the jet. More interestingly,
however, the solution shows the existence of resonances whenever

(1)
b0 11 3
4’ 2 4°°°°

A

where A = 21 c,/w is the wavelength of radiation. The first resonance occurs
when the effective distance between the axis and the first turning point is
one-quarter wavelength; this condition is analogous to the classical resonance
condition for an open-closed tube. There is also a possibility for a perfect
null in the far field whenever

(1)
Eo cos (6 - 60) + &

A

4.3.7 Two Turning Points -- Problem (@

Consider again the case in which the shielding function g2 has two turn-
ing points, but this time the source is located in between them. This prob-
lem will be solved by an application of the classical WKBJ technique. Thus
the alternate shielding functions G2 and F2 = -G2 will be used. The geometry
is elaborated in Figure 4-29.
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Assume first that (n/kr) = (v/r) is so small that G2 = g2 - (v/r)?2
has three turni?g points_at rov), r(2) and ré3 Clearly the source must
lie between réﬁ and r{3). There are altogetﬁer five regions in which the
transform of the Green's function must be cggsideredi) These are r < rU% .
rél) <r<r 3 R r(2) < r < Tgs Top < T < rév and r( < r. In each of
these regions, the solution is written as an exponential function (with
real or imaginary argument) according to the WKBJ procedure [Carrier (31)],
The matching of these solutions across the turning points and the source,
and the requirement of outgoing waves for large values of the radial vari-

able, render the solution unique. This is given by, for r < rée),

(3)
R -in/4 Tov )
P = = e exp (- k f F dr
k /GF
0 Ty
(139a)
r
2298 exp (ik f G dr)
3
av

where

(2) (139b)




L@
gv
) _9k Fd
Y exp ( -2 f ) (139d)
L@
av

For larger values of (v/r), there is only one turning point at r = rg,
(see Figure 4-29). In this case, the solution is considerably simpler for
r>r

ov

2 -in /4 Tov r

P = e exp ( -k f Fdr) exp (ik j G dr)
r, r

2ik»’GF0

(140)

av

because there are fewer regions to consider. The quantity £ is given by
equation (118).

Consider now equation (139a). At high frequencies, the exponential
factors 8 and y are vanishingly small. These factors are multiplied by
a = tan k (-) which may become large, so that the factors aB and ay may be
of order unity in certain narrow regions. These regions could be classified
as resonances; they are ignored in the present analysis. As discussed pre-
viously (see Section 4.3.3), the current analysis does not take into account
the behavior of the pressure in certain singular or nonuniform regions.
These regions exist in the present mathematical model but are thought to be
unimportant for the physics of high velocity jets. Thus equation (139a)
essentially reduces to (140). 1In an asymptotic sense there is only one
solution [i.ec., (140)] which is independent of the number of turning points
or the value of (v/r).

It is worthwhile to discuss the asymptotic equivalence of (139a) and
(140) from another point of view. Physically, one would expect the solution
to depend, at high frequencies, only on the conditions (i.e., jet velocity
and temperature) between the source and the [ar-field observer. This is
clearly shown by equation (140) in which the dependence on the shielding
function enters only for r > ro. Conversely, from equation (139a), it is
seen that values of the shielding function for r < r, affect the solution
exponentially weakly. 1In other words, the dominant part of the radiation
arrives directly from the source (rather than from multiple reflections from
the shear layer). In any case, the appropriate solution of this section,
equation (140), is identical to (135a) of Section 4.3.5, so that the analysis
here need not be carried any further.
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4.3.8 One or Two Turning Points -- Problems (® and ® T

These two problems generate a number of possibilities which are all
asymptotically equivalent. The dominant contribution to the solution comes
from those values of (v/r) for which G2 1s positive at the source. The
shielding function G2 will have a number of turning points at r < r,. From
the preceding section it was noted that only the turning point nearest to
the source affects the solution significantly; the effect of the other (if
any) turning points is exponentially weak. The solution is

-im /4

r r

R )

P =————e exp(ikf Gdr)cos(kf Gdr -
ik »/GG0 - ;

™

)
ov ov
where Ty is the nearest zero of G2 to rg (r < ry). This representation of

the solution agrees with equation (126a), and the results for the Green's
function follow from (121).

4.3.9 1Interpretive Remarks

field Green's function under the assumed behavior of the shielding function.
Although a priori, there were six classes of problems, three of these were
found to be redundant in the sense that they reduced to one of the other
classes. Thus, the solutions to problems @, @, and (B generate all the
required results.

This concludes the formal derivation of the expressions for the far- i

The main point to be made is that, when the shielding function g2 is
negative in a region R between the source and the observer, the far-field
pressure is exponentially small. The argument of this exponential is pro-
portional to the source frequency and to the width of this region R. The

| presence of this (real) exponential is a direct consequence of acoustic
, shielding, i.e., the source does not communicate directly with the ambient,
but radiates through a high velocity and high temperature jet.

\ It would be convenient, following this comprehensive discussion of the

) nature of the solutions to the fundamental acoustic shielding equation (as a

function of the number of turning points of the shielding/propagation function

g2), to be able to provide simple formulae or criteria by which the number of

)’ these turning points can be generally determined, Unfortunately, due to the

‘ dependence of g2 on the local jet velocity and temperature profiles and the

iy far field radiation angle of interest, no simple substitute has been found for
the need to actually compute g2 (r) and hence determine the number of turning
points, This procedure can be readily computerized, and indeed is a part of

( the computer program contained in the supplement to this report, For simple

, exhaust flows such as the conical nozzle flow, one can say that, within the

zone of silence, one turning point will occur, and none will occur outside

the zone of silence, For more complex exhaust flows, aspecially with inverted

; flows, no such simple result can be stated.
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4.3.10 Pressure Field of Convected Singularities

The solution of

. § (x'~U - -
ot ( Msle-r)ele-o)
U r
is required, where & mav be thought of as a pressure source in analogy with

the classical wave equation. After evaluating the derivatives on the right
hand side, it is found that the forcing term in equation (142) reduces to

L(s; U, x') = oD (142)

S(x' - Uct) §(r - ro) s (0 - 00)

r

(143)
Sx' - Uct) 8(r - rO) §(a- OO)

r

-i(xit

+ (U - UC) e

where §' is the derivative of the § -function. Thus, S is expressible in terms
of 4 and 39/3x'. TIn fact,

S = o o [ -iw + (U0 - UC) lko*] g (144a)
or 1-M coso
S = -ik p ¢ —et—r g
0 o 1- MC cos O (144b)

It is now observed that the coefficients of the Lilley operator are
independent of x', ry and oy Thus, any derivative (with respect to x', I,
or 00) of the left hand side of equation (142) is directly transferable to
S, Similarly, these differentiations, when applied to the right hand side,
vield higher order singpularities. These singularities model the various
dipole and quadrupole solutions of Lilley's equation. For example, a suitable
linear combination of 'S/ﬁro and WS/BGO produces a transverse dipnle, and

§/3r, represents an r-dipole.

The objective now is to derive the expressions for the quadrupoles that
will be used in the prediction of jet noise. The procedure is outlined below
for the y-dipole, Dy:

SinOo 3S
Dy = as/ayo = coS aoas/aro——?— (145a)
o 9%

where vy, is the y-component of the source coordinate. Next the magnitude of

U, is calcuiated from equations (144b, 121); this is then averaged circum-

ferentially with respect to 8, and 8. If
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(145b)
a =—17fde fdelolz
y 47 o y
-7

-

where |:| denotes the magnitude of a (complex) quantity, then it follows
from equations (121) and (144b) that

02 K20 2
o -2 -
ay = —=—; >— (1-M, cose)” (1- M, cose) *
327 R (co/cm)
(146a)
x-l'( "o ) [1+E /rg)]
2 'rg, o’ "0%0
where
o
gO:[ g dr

The subscript "o" denotes the value of a quantity at the location of the

singularity r = rg.
A similar expression arises from Problem C) in which there is a turning

point. In the latter case, however, there is at least one difficulty that

immediately occurs in connection with the expression for the pressure field

of a dipole and other singularities. When the singularity is near to the

turning point, f, - 0 so that ay » =. This is physically unrealistic and 1is

a direct failure of the present theory. The difficulty arises because the

source is now too close to the turning point (i.e., the distance between

source and turning point is less than a wavelength) so the parameter k§ is

no longer small, where § is the separation between the source and turning

N point. There is a rigorous mathematical procedure for circumventing this

| difficulty; however, it leads to great complexity. A much simpler, albeit

) approximate, physical approach for resolving the problem was taken. 1If a
[ dipole is situated in the vicinity of the jet axis, or if g is a slowly vary-
] \ ing function of r (i.e., approximately a constant), the last factor in
)' equation (146a) reduces to unity, This sugrests ignoring the last factor
' even in a more general case. This approximation is adopted in this section
iy to obtain the simplest possible results.

An alternate way to look at this approximation is to note that the
( precise location of the source is important only for the calculation of the
' exponential (i.e., rapidly varying) shielding factor; the precise locatiom
of the source is unimportant for the calculation of certain other quantities.
Thus, those latter quantities may be approximated by assuming that the source
; lies on the axis of the jet. In this case it is found that
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ay = (1-M coso) "(1-M_ coso) 2
32 72R? (co/c )2 (146b)

where it is emphasized that equation (146b) is valid for the case in which
g2 has no turning points (i.e., Problem (D).

The circumferentially averaged far-field pressure of a convecting ring
of y-dipoles is proportional to the square of the frequency and is inversely
proportional to the local temperature at the singularity. There is a con-
vective amplification of (1 - M, co:;O)'2 due to the jet velocity and a
"classical’ convective" amplification of (1 - Mc cos0)™™ due to source con-
vection. This is because the shielding function gg itself has a convective
amplification of (1 - M. cos(d)™<.

The various quadrupole solutions are now summarized. Defining

o 1 -2 -2
4 = (1-M_ cos0) (1 - M, cos 0) (147)

16 7°R? (co/c )2

The foliowing quadrupole solutions can be derived:

Problemg:)

ayy = 3~ k" g&VS (148a)
a = a /3
yz yy (148b)
a k' coso
B 148

XX (1 - Mc cos 0)" (148¢)
. ) k" gg cos 0

_—

y 2 (1 - Mc cos ) ? (1484)
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Problemg:)

Defining
r
g
B = exp ( -2k f f dr) (1493)
Yo
To
Y = [1+ 4k f £ ar] /2 (149b)
0
then
- 4 4
ayy 3as8 k fo/SY (149¢)
— /
dyz ~ ayy/3 (149d)
b b
axx - aB k'cos 0 (149¢)
y (1 - M, cos©9) "
aB k'f 2 cos?0
_ 0
Xy 2y (1 - Mc cos0)? (149f)

To obtain equation (149) it has been assumed that the modified Bessel
function I, (x) can be approximated by (1 + 2n x)'l/2 exp {(x) for all values
of x. The error in this approximation does not exceed 10%.

These results for Problem CD reveal an interesting effect. For quad-
rupoles situated in the vicinity of the jet axis, vy ~ 1, whereas for quad-
rupoles far from the axis, y - k1/2 55 1. As the radius of the ring of
quadrupoles increases, the exponential shielding factor (149a) generally




e &

decreases. However, the above variation in y tends to reduce the far-field
pressure, or equivalently, increase the effective shielding.

Referring to Figure 4-28, as the individual members of the ring are
moved towards the jet boundary, the shielding of those quadrupoles that lie
in the vicinity of the angle 8 decreases. On the other hand, the shielding
of those quadrupoles that lie in the vicinity of (8 + 7) will increase. The
net result for shielding of a ring of quadrupoles is a decrease due to the
exponential factor but an increase due to the factor y. This variation in
vy was found to be fairly important for jet velocities under 1000 fps but
totally unimportant for higher velocities. In this report, y will be set to
unity.

Problem g:)

These results are the same as those of Problem C) except the expressions
are multiplied by the exponential shielding factor

e

exp (-2k IO f dr)
(1

r

c

Problem g:)

The results are the same as those of Problem (@ except

i Also y is set to unity as discussed under Problem (@) .

) Problems (3 and (®

These results are identical to those of Problem (©.

This concludes the derivation of the circumferentially averaged pressure
iy field of a ring of incoherent quadrupoles. It should be emphasized that this
derivation is not perfectly rigorous; difficulties arise, for example, when
the source is too close to the turning point. The present work suggests a
reasonable approach to handle these difficulties. It is believed that the
final expressions of this section are accurate enough for use in the predic-
tion of jet noise.
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4.3.11 The Directivity of Noise

To predict the directivity of noise, the pressure field of the various
quadrupoles must be combined in a specific manner to represent the radiation
pattern from convecting and isotropic turbulence. The work of Kibner (3
provides these weighting factors as

2 .
p (axx + 4axy + 2ayy + 2ayz) (150)

where pz is the mean square acoustic pressure in the far field. The factor
of proportionality in equation (150) is related to the intensity of turbu-
lence, as such, it comes from an aerodynamic mixing calculation. The de-
tailed coupling of jet aerodynamics and acoustics is described in Section
4.7. Observe that equation (150) was also used very successfully by
Mani(37, 38) in his prediction of round jet noise.

Ribner derived (150) for Lighthill's equation. It turns out that for
Lilley's equation (150) is essentially correct only for Problems @, @,
C) , and ; in other words, only when the shielding function g2 is positive
at the source. In this case, all the quadrupoles contribute to the noise.

When the shielding function is negative at the source (i.e., Problems

@ and ®)

p " a (151)

and the dominant contribution to the far-field pressure comes from an (x - x)
quadrupole. The derivation of this result is quite lengthy and will not be
reproduced here. Suffice to say that Pao(45) finds exactly the same result
for Phillips' equation. Roughly speaking, the reason is that the time delay
is associated only with the x~location of the source. There is no time
delay due to the radial location of the source since equation (134) contains
no phase factor depending on this quantity.

For example, for Problem (@), (150) becomes

. _ 4
7 . k" (1 Mocose)

(co/coo )“ (1 - Mc cos0)*

(152)

so that the unshielded far-field pressure is expected to be amplified by three
powers of the Doppler factor., This is determined from (152) and the defini-
tion of a(147) and the correction of one Doppler factor as given be Ffowcs-
Wwilliams(6), This fairly low convective amplification is generally observed




in jet noise outside the zone of relative silence Balsa(47, 49), Within the
zone of silence the convective amplification becomes seven powers* of the
Doppler factor (This is determined from (151), (123a), (148a) and (147)).

At low frequencies, this large amplification remains, whereas, at high freg-
uencies, acoustic shielding tends to reduce the far-field sound pressure
level, consistent with the actual behavior of jet noise directivities at
fixed source frequencies,

4.3.12 Conclusions

Expressions have been derived to predict the directivity of jet noise
for arbitrary jet velocity and temperature profiles. The present theory
combines the classical ideas of Lighthill, Ribner, and Ffowcs-Williams with
those of Mani to provide simple results for the estimation of acoustic
shielding.

It is found that due to fluid (rather than source) convection there is
additional convec:ive amplification that depends on the jet velocity at the
source. The total convective amplification of an eddy can vary from three to
seven powers of the Doppler factor depending on the angle to the jet axis.

At high frequencies and shallow angles to the jet axis, the sound in the far
field is greatly reduced. This is attributed to the shrouding effect of the
mean flow.

Outside the zone of silence, jet noise varies as the third power of the
average jet density [see equation (152)]. Within the zone of silence, the
noise is explicitly proportional to the density. However, there is also an
implicit dependence through the exponential shielding integral.

Finally, these acoustic results have been coupled with the calculation
of the turbulent properties of jets to provide an absolute prediction of
noise; this is presented in Section 4.7. In all of this development only
the self—noﬁse is considered, for reasons discussed by Mani(37, 38) an4
Goldskin1),

*
These factors include the correction of one Doppler factor as given by
Ffowcs-Williams(6),




4.4 ACOUSTICS OF FLIGHT NOISE PREDICTION

A detailed discussion of the effect of forward motion on the generation
of noise is not the objective of this section. However, the effect of
flight on the acoustics of jet noise will be discussed.

These acoustic flight effects are very similar for the Lighthill and
Lilley equations; therefore, only a brief outline of the derivation will be
given (the classical results for Lighthill's equation are well documented).

4.4.1 Introduction

The effect of aircraft forward motion on jet noise was studied by
Ribner(7) and Ffowcs-Williams(6). They find that the acoustic intemsity
varies as

u?l . v |1-M*cos®|'5 l1+M cosol'1
rel J c o

where Uy is the jet velocity (relative to the nozzle), Urel is the jet
velocity relative to a stationary observer, M: is the eddy convection Mach
number relative to a stationary observer, M, is the acoustic Mach number of
the aircraft and O is the angle to the jet axis.

The above result is based on a rigorous treatment of the acoustics
consistent with the Lighthill theory, and on some crude assumptions with
respect to the generation of noise (i.e., turbulence).

This result shows that noise should decrease in flight due to the
reduction of the turbulent shear (essentially the relative velocity effect,
Ufe1) and that noise should increase in the forward quadrant (90° <© < 180°)
due to aircraft motion. Experimental data do behave in this general fashion,
although the above scaling principle is, by no means, very accurate.

The purpose of this section is to derive the corresponding results for
Lilley's equation. Only the effect of flight on the acoustics is given
since this effort is not concerned here with the behavior of turbulence in
flight. .

4.4,2 Formulation of the Problem

Assume that physical x = (x', y, z) space is spanned by a stationary
cylindrical coordinate system (r, 8, x'), where x' is along the jet axis.
Lilley's equation is given by
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L(p; U, x") = -;12—- DG p - DUAp - Ed; (log c?) DU 2—%
2 g—g ax'aza — = o DyF 9 (153a)

with

D, = % 2 U2 (153b)
and

F = 9v.7 - (uu - uu") (153c)
The Laplacian is denoted by

A=-322+322+-11:3—9;+-12——% (153d)

3(x" dr r 36

and t denotes time, p is the acoustic pressure, ¢ = c(r) is the undisturbed
speed of sound, U = U(r) is the mean or time average jet velocity and

p = p(r) is the mean jet density. The turbulent velocity fluctuations are
given by u' and the overbar denotes an appropriate average (u} is the radial
component). The geometry is illustrated in Figure 4-30.

The quantity f is the source of noise; only the self-noise part is
considered for the reasons discussed by Mani{37). At infinity, the jet
velocity is assumed to have a nonzero value U,, so that in the present
section the acoustics of a jet placed in a large wind tunnel of free stream
Un will be considered. It is shown how these results can be used to obtain
the sound pressure level in flight in section 4.4.5.

4.4.3 Solution of the Problem

The solution of the above problem is obtained by the techniques dis-
cussed in section 4.3. Again, there are six equivalence classes of problems,
but only one of these will be considered in detail. This is the case in
which the shielding function g2 (123a) has no turning point.

The effect of a nonzero tunnel or jet velocity at infinity is extremely
simple for the acoustics and results in referencing all velocities to the
free stream Us,. Hence, the expressions derived in section 4.3 (for Uy, = 0)

are directly applicable provided that the followiig replacement of variables
occurs:

132 / ’/,’.




Nozzle

Figure 4-30.

\ Observation Point

Geometry of the Problem,

133




M » M =M -M (154a)

M - M =M -M (154b)

where on the right hand sides of (154), M and M. are the jet and source
convection velocities (normalized by c, = speed of sound at iafinity)
relative to the nozzle, and My = Uw/Cew is the free stream Mach number. A
derivation of this eqivalence principle is given by Balsa(54),

[t will now be convenient to treat a 'stationary" source for which Mg = O.
The efiects of source convection will be introduced at a later stage through
a moving turbulence correlation.

From equations (121) and (144b) of the previous section and by the
principle of superposition, it is possible to show that

0oy Coo dxo
;- fo =
47R (1 + M_coso) c 1 - Mo 08 O
F [XO y t - R/cm + 7T ] (155a)
where
.
T o= - [(g-gw)c—w+ <+ M_cos0) (155b)
0 0
L = (CI’QZ’CB) = (cos0, T coso, T sino) (155¢)
and
- 1/2
! 2
: roo= (1-M CSSC” - cos’ 0 (1554)
4 (c/c )

Here p_, ¢,s He are the values of the density, speed of sound and shielding
function at infinity, R + = is the (retarded) distance from the jet and
~is the (retarded) angle to the jet axis. Ths subscript "o' denotes the

value of a quantity at the source point xgq,

\’
7 g r/(1 + M cosn) (156a)
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r
£ =f g dr (156b)
(o)

The integral in equation (155a) is evaluated over the jet volume. An approxi-
mation implied in the validity of (155a) is that £, 2 ggr,.

The principal result (155a) expresses the far-field pressure as a
suitable integral of the double divergence of the Lighthill stress tensor
evaluated at the retarded time. The effects of the shrouding jet are shown
in the factor (c_/c) (1 - M cos 0~! and in the coefficient I'. If (c/ec) =1
and M = 0, T = sin O, Note that the components of ¢ in. (155c) are written
in the order x', y, and z. -

The relationship between the retarded coordinates (R, 0) and actual
(tunnel) coordinates (Rx, O4) is given by Morse and Ingard(55)

1

2 - (157a)
Ry (1+M2 -2M coso)!/?

1 coso - M

= (157b)
(1+ M: - 21\/[00coso)1/2

For a definition of tunnel coordinates, see Figure 4-30.

4.4.4 Results for the Spectrum Using Moving Correlation

The purpose here is to give the expression for the 1/3 octave band
spectrum of the noise of a jet placed in a wind tunnel. The results can be
written down by inspection from the derivation presented by Goldstein(51),

Define the autocorrelation of the acoustic pressure at a fixed point in
the far field by

P(t) =p®plt+rr) = fp(t)p(t-(»r)dt

00

where v is an arbitrary time delay. The power spectrum of jet noise is
defined as

= El:;r- P (r) exp (iwt) drt (159)




so that from Goldstein(51)
2

wl = %
w c"R?2 1+M _coso (1 +M, cos0)

Co dx
) o
1 - M, cos 0)°

wg o 1- Mc cos0
X Hijksl o c_(1+M_cos®) % 1+ M_ cosO

(160a)

The quantity wl, is essentially the 1/3 octave band spectrum, repeated indices
denote summation, and the integral without limit denotes integration over
the jet volume. The observed radian frequency is denoted by w.

The spectrum of the moving turbulence correlation is denoted by

) 1 [ee] [se]
Hl]kl (_)Ev E; UJ) - (2“)“ l[ dT j' d_g Rl]kﬂ, (i, g [ T)

exp[iw(t -~k -¢&)] (160b)

Note that Riij (xy 5,1) is the usual convecting two point correlation of
the Lighthill stress tensor at points (x + £/2) and (x - £/2). As such x is
the mean coordinate of the points and § is the separation vector. The
velocity fluctuations at these points are correlated with a time delay T.
The turbulence is assumed to convect at Mach number M¢ relative to the
nozzle and M, = M, - M.

The interpretation of equation (160a) is interesting. The noise that
is observed at frequency w in the tunnel is generated by turbulence at
freqiency o (1 - Mg cos /(1 + M, cos ), For M, = 0 this reduces to the
well known Doppler shifted frequency. The wave number of turbulence that
contributes to this noise is simply wi, (1 + M, cos M ~1/cw. The estimation

or Rijkf or Hiij comes from the aerodynamic mixing calculation.

4.4.5 bpectrum of Noise in Flight

Consider now a nozzle convecting to the left at Mach number M_ = U /e
(Figure 4-31). Imposing a uniform velocity of Ueo on this system renders the
noszle stationary and produces a uniform stream of speed Us at infinity. This
corresponds to the previous wind tunnel situaton except for the following
modification: when the nozzle is in forward flight, the observer is generally
stationary relative to the ambient so that there is motion between the
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Figure 4-31. Nozzle in Forward Flight.
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observer and the nozzle. On the other hand, in the wind tunnel there is no
motion between the observer and the nozzle. To account for this difference,
one must Doppler shift the tunnel results by the amount Q = w/(1 + M_ cos 9),

Thus the spectrum of the sound pressure level in forward flight becomes

o] il Ol
_ I © o5 i-j~k>g
W= 2 c'R2 & (1+MmCOSO)
c dx
_‘i =0
[ &
(1~M cos 0)*
25 g -
1-M cos (161)
um { c o | c 0)

where () is the observed frequency.

4.4.6 Discussion

First it is interesting to consider the limiting form of equation (161)
as M+ 0. In this case

so that, apart from the dynamic factor of (1 + M cos H)‘], the spectrum
of the noise from a stationary nozzle is functionally identical to that of
a nozzle in forward flight provided that in the latter case all velocities
are referenced to U .

Forward tlight also produces an amplification factor of (1 + M cos m-1
which will increase slightly the noise in the forward quadrant (90° < © < 180°).

Actually, forward flight will change the magnitude of the spectrum of
turbulence somewhat because of reduced mixing. Therefore, in addition to
the above relatively simple acoustic effects, there are more complex effects
due to changes in the turbulence structure. These can be calculated from a
computer model for the aerodynamic mixing but it is very difficult to give
an accurate a priori estimate for them with any kind of generality.

“.4.7 Conclusions

To predict jet noise in flight, one can use the expressions derived in
sections 4.3.10 and 4.3.11, provided chat a convective amplification factor

(1 + M cos 3T s adjoined to the mean square acoustic pressure and all
138
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velocities (jet and convection) are referenced to the flight velocity. 1In
other words, nozzle fixed jet and convection velocities are to be replaced
by the corresponding observer fixed velocities. Apart from the Doppler
shift of Q@ = w/(1 + M_ cos 0), there is complete equivalence between the
spectra in flight and in a wind tunnel. They both produce a dynamic
"correction" of one Doppler factor.
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REICHARDT'S THEORY FOR ARBITRARY JET FILOWS

4.5.1 lutroduction

An essential ingredient to the study of jet noise is the description of
the jet plume flow field. The turbulent mixing of the exhaust {low with
the ambient surroundings constitutes a primary noise source mechanism. The
spatial distributions of plume mean (time-averaged) properties such as
velocity, density, ctce., determine the degree to which the generated noise
is amplified due to convection and/ur shielded as it propagates through the
plume to the ambient tlileld. Possible approaches to reducing the noise
emitted bv a turbulent jet include: (1) alteration of the mixing process,
(2) reduction of convection effects, and (3) reinforcement of the flow
shielding effects., These concepts for reducing jet noise require a thorough
grasp of the fluid mechanics of turbulent jets, and, therefore, a method {or
predicting turbulent jet flows is indispensable. Traditionally, jet noise
reduction has been achieved by exhaust nozzle area shaping and flow division.
Examples of area shaping include elliptic ard rectangular nozzles, multiple-
lobe nozzles, ete.  Examples of {low division include multitube nozzles and
multispoke/chute nozzles. A survey of experimental results pertinent to
these tvpes of jet nozzles was given by Stringas and Mani{56); a major
conclusion of this survey was that a systematic approach to the understanding
of jet tlow structure for arbitrarily shaped nozzles was required to provide
a technological basis for design optimization without resorting to expensive
and time-consuming parametric testing.

The development of an accurate computational prediction method for the
flow field of turbulent jets ecmanating from nozzles of arbitrarv geometric
shape was undertaken to fulfill the requirements described above. Several
approaches to modeling free turbulent flows relevant to the jet plume problem
have been cstablished for simple round jets. An excellent review of the
current ctate ol the art on turbulent Ulow modeling has been published by
Launder and Qpalding(37). This review covers the range in modeling complexity
from the simple 1925 Prandt] mixing length model to the more recent highly
sophisticated nulticquation ¢losure models which require numerical finite-
difterence =olution techniques.

Motivated by the desitve to establish a prediction method for turbulent
iets of arbitrary initiad cross sectlon, an assessment was made of the past
s current mode bong approacaes, with o view toward selecting the approach
witich wonld require a minimal amount of development, and at the same time
provide (potentiallv) the required aceuracy for the intended application.
tensideration was also piven to casce ol implementation as a practical computa-
tional procedure,  The method tinally selected for further development was
tivit ol Kvndwll('H), which is an extension ol the work of Alexander et al. (59)
tooarbitrar o nozzie shapes.  The method is based on Reichardt's(00) inductive
thoory o dree turbulence: a key Peature ol this theory was the establishment
o Hinear poverning cquation for momentem transport.  This linearity
teature permits fuveline the superposition principle to construct quite
crpolen thow Tlelds atiliciog cleaentary solution forms, considerab v osimpli-
iving the mathematical and computational aspects of the problem. Alt, ough
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more modern and rigorous mcethods were available for simple jet flows, there
was no other technique available which offered the capability of modeling
jet flows tvpical of aircraft engine suppressor nozzles (e.g., multipl -
lobes, multitubes, multispoke/chute nozzles).

Although the developments of Reichardt's (60) theory, as proposed by
Atexander(59) and Kendall(38) have been approached from the viewpoint of
superposition of elemental "point source” jet solutions to construct complex
jet solutions, u more formal mathematical treatment is given herein which
recognizes the analogy with transient heat conduction problems. Additionally,
a formal extension to include the effects of prescribed pressure gradients
on the plume ic also given, in anticipation of recognizing the influence of
variable base pressure effects on multielement nozzle flows. Considerable
attention is also given to calculation of those turbulent structure proper-~
ties relevant to noise generation. The formal mathematical treatment employed
herein, utilizing Green's function methods, is shown to yield results
identical to those obtained using the superposition approach.

During the course of the theoretical development, certain constants
related to the mixing and entrainment properties of the flow arise. These
constants must be evaluated experimentally, and methods for deriving these
constants from experimental data are discussed. Comparisons of predicted
and measured flow field quantities are presented for several nozzle geome-
tries of interest, and the strengths and weaknesses of the prediction method
are discussed. Finally, suggestions are made for extensions and improve-
ments in the thecoretical model.

4.5.2 Basic Equations and Assumptions

Consider a jet emanating from a nozzle of arbitrary cross section, as
shown in Figure 4~32. The governing equations for axial momentum transport
and conservation of mass, in absence of laminar viscous stresses, are as
follows:

Su " ‘u 3u 1 4 162)
et + — + —-—— v — — —R = ( “
T u S v 5y + v gy + 5 Tx 0
FANU (ou) + 2 (Gv) + = (pw) = 0 (163)
it ax Pd Iy [ 3z F
where (u, v, w) are the (x, y, z) - components of instantaneous fluid velocity,

respectively; and p is the static pressure and p is the density. Time is
denoted by t. By multiplying equation (162) by p and combining with (163),
the conservative form of the momentum equation is arrived at:

J 32 . a2 3p
Y (pu) + " (u-) + 3y (huv) + " (puw) + o 0 (162a)
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Consider next the instantaneous flow variables to be comprised of a mean
value and an unsteady, fluctuating component; e.g., u=u+ u', v=v+v',
etc., where overbars denote time-average values and primes denote unsteady
components. The unsteady (turbulent) component has the property that

With these distinctions, it can be shown that equation (162), after time-
averaging and assuming that density fluctuations are small (p'/p <<1), has
the well-known form

— (= ,_—odu_=-o0ul\, 9p S~ =7
+ v+ + = - '
¢ <u Ix M ay Y 3z X IxX (o u'?)

(164)

_ _3__ ToTony _8___ PO ]
5y (0 u'vh) 5y (P ou'wh)
The assumption that terms involving p' are negligible amounts to an assumption

that the turbulence Mach number |u'/cl<< 1. See, for example, Hinze(él), p. 19.

Equation (162a) can also be time-averaged, and the mean quantities can be
assumed invariant with time., The result is as follows:

3

LB Suv) + - (ouwy + 202
e (hus) + Ty (puv) + = (ouw) + 7+ = 0 (164a)

Both equations (164 and 164a) contain the same simplifying assumptions.
Equation (164) is the classical turbulent flow equation usually employed to
analyze turbulent flow problems, and explicitly displays the turbulent
stresses (0 u'2), (p u'v'), (p u'w') on the right-hand side. Equation (164a),
which is employed herein, contains these same quantities implicitly through
the relations

pul

pul+pu?’ (165)

"e
o
o |

puv = p uv +

uv

=

nuw

uw + p u'w’

I
=

The point to be made is that, in the Reichardt approach which follows, the
starting point is the same as in the classical theories of turbulence, and that
the departure arises in modeling the turbulent shear stresses, an area which
by no means has a universally accepted method of approach,
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The Reichardt (60) hypothesis that the transverse momentum fluxes are
proportional to the corresponding traverse gradients of the axial momentum
flux is now invoked. A discussion of the implications of tkis hypothesis is
given by Hinze (61), pp. 290-293. The following relationships are therefore
assumed:

Jav = - A6 3= (ud); puw = ~A(x) = (u?) (166)

The proportionality factor A is assumed to be at mest a function of axial
coordinate x. Substituting equation (166) into (164a) yields the following
governing equation for pu<:

2 .
- 0y, 92 2 5
= O - w5 Gy ed] - - 2 (167)

Reichardt's original theory presumed constant static pressure throughout the
flow, as is usually the case for wakes, jets, etc. The pressure gradient
term will be retained herein, however, in the hope of being able to assess
reduced base pressure effects typically occurring in multielement nozzle
flows, as discussed in the introduction. The assumption is made that the
pressure distribution in the jet plume is known, either from experiment or
from an ir iependent auxiliary calculation. The pressure gradient term in
equation (16/) is therefore treated as a known ‘'source' term. This approach
was first suggested by Kantola(62).

Let f = puZ and Q = - 3p/px. Equation (167) can therefore be rewritten
as follows:

L(f) = Q(x,v,2) (168)
. where
N ) .yl
. il R o< -”
; L) =1 o [in e 20 . '
() )HX (%) [dyﬁ QZLJ‘ (169)
1
)
N A solution of equation (168) is sought with the appropriate boundary conditions.
) As pointed out by Kuntolu(ﬁz), cequation (168) is analogous to the diffusion
) ¢quation tor transient heat conduction, the momentum transport coefficient
' A vorrespondin